期刊文献+

基于退火的蚁群算法在连续空间优化中的应用 被引量:14

Application of ant colony algorithm based on simulated annealing to continuous space optimization
下载PDF
导出
摘要 研究了蚁群算法在连续空间的函数寻优问题。通过修改蚂蚁信息素的留存方式和行走规则,定义了一个连续空间的蚁群算法。模拟蚂蚁用触角交流信息的过程提出了直接通信的学习机制,增强了蚂蚁的搜索能力。为了防止出现"早熟"现象,在局部搜索过程中嵌入了模拟退火的思想。同时为避免过大的残留信息,选择了新的信息增量计算函数。实例运算证明了算法的有效性。 An ant colony algorithm applied to continuous problems is proposed.This algorithm is defined by modifying both the "trail remaining" and the transfer rules.Based on the processes that ants exchange information through antennas,a novel study strategy "direct communication" is presented,which enhances the ants' ability to search the continuous space.In the meantime,a strategy of simulated annealing is embedded in the algorithm to improve the optimization performance and prevent "premature" phenomena during the local searching.In order to avoid the large residual information,the new information increment function is applied.Experimental results show that the proposed algorithm is effective.
出处 《计算机工程与应用》 CSCD 北大核心 2007年第23期74-76,共3页 Computer Engineering and Applications
基金 国家自然科学基金(the National Natural Science Foundation of China under Grant No.60674092) 江苏省高技术研究项目(the High-Tech Research Program of Jiangsu Province of China under Grant NoBG2006010)
关键词 蚁群算法 连续空间寻优 学习机制 模拟退火 ant colony algorithm continuous space optimization study strategy simulated annealing
  • 相关文献

参考文献6

  • 1Dortgo M,Maniezzo V,Colorni A.Ant system:optimization by a colony cooperating agents[J].IEEE Trans on Systems Man and Cybernetics Part B:Cybernetics,1996,26(1):29-41.
  • 2Gambardella L M,Dorigo M.Solving symmetric and asymmetric TSPs by ant colonies[C]//Proc IEEE Int Conf Evolutionary Computation,1996:622-627.
  • 3汪镭,吴启迪.蚁群算法在连续空间寻优问题求解中的应用[J].控制与决策,2003,18(1):45-48. 被引量:100
  • 4杨勇,宋晓峰,王建飞,胡上序.蚁群算法求解连续空间优化问题[J].控制与决策,2003,18(5):573-576. 被引量:54
  • 5Dorigo M,Caro G D.Ant colony optimization:a new meta-heuristic[C]//Proc of the 1999 Congress on Evolutionary Computation.Washington:IEEE Press,1999:1470-1477.
  • 6张影,刘艳秋.软计算方法[M].北京:科学出版社,2002.

二级参考文献20

  • 1汪树玉 杨德铨.优化原理、方法与工程应用[M].杭州:浙江大学出版社,1999..
  • 2[1]Dorigo M, Gambardella L M. Ant colony system: A cooperative learning approach to the travelling salesman problem[J]. IEEE Trans Evol Comp,1997,1(1):53-66.
  • 3[2]Dorigo M, Maniezzo V, Colorni A. Ant system: Optimization by a colony of cooperating agents[J]. IEEE Trans SMC: Part B,1996,26(1):29-41.
  • 4[3]Gambardella L M, Dorigo M. Solving symmetric and asymmetric TSPs by ant colonies[A]. Proc IEEE Int Conf Evol Comp[C]. Piscataway, 1996.622-627.
  • 5[4]Boryczka U, Boryczka M. Generative policies in ant systems for scheduling[A]. 6th European Congr Intell Tech Soft Comp[C]. Bruxelles,1998.1:382-386.
  • 6[5]Boryczka U. Learning with delayed rewards in ant sys-tems for the job-shop scheduling problem[A]. First Int Conf Rough Sets Current Trends Comp[C]. Bruxelles,1998.271-274.
  • 7[6]Gambardella L M, Taillard E D, Dorigo M. Ant colonies for the quadratic assignment problem[J]. J Oper Res Soci,1999,50(2):167-176.
  • 8[7]Maniezzo V,Dorigo M,Colorni A.Algodesk:An experimental comparison of eight evolutionary heuristics applied to the quadratic assignment problem[J]. European J Oper Res,1995,81(1):188-204.
  • 9[8]Maniezzo V. Exact and approximate nondeterministic tree-search procedures for the quadratic assignment problem[J]. Infor J Comp,1999,11(4):358-369.
  • 10[9]Maniezzo V, Colorni A. Ant system applied to the quadratic assignment problem[J]. IEEE Trans Knowl Data Eng,1999,11(5):769-778.

共引文献136

同被引文献98

引证文献14

二级引证文献50

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部