期刊文献+

基于辅助空间与主空间合作的半监督聚类方法 被引量:2

Novel semi-supervised clustering:collaborating primary space with auxiliary space
下载PDF
导出
摘要 无监督聚类仅仅基于主空间,当辅助空间被引入聚类过程时,无监督聚类成为半监督聚类。代价函数的设计既考虑到主空间又考虑到辅助空间,从而一个新颖的基于辅助空间与主空间合作的半监督聚类方法APMSC被提出。该算法通过迭代优化,使得相应的代价函数最小化,最终得到有效的聚类结果。通过实验证实了APMSC的有效性和优越性。 In general,unsupervised clustering is only based on primary space.If auxiliary space is considered to incorporate with primary space,unsupervised clustering will become semi-supervised clustering.In this paper,auxiliary space combined with primary space is introduced to the design of the corresponding cost function.And accordingly a novel semi-supervised clustering algorithm APMSC based on both auxiliary space and primary space is proposed.This algorithm realizes the efficient clustering by minimizing the corresponding cost function iteratively.Our experimental results demonstrate its validity and superiority.
出处 《计算机工程与应用》 CSCD 北大核心 2007年第23期177-180,共4页 Computer Engineering and Applications
基金 教育部新世纪优秀人才计划 教育部科学研究重点项目 模式识别国家重点实验室开放基金
关键词 辅助空间 主空间 代价函数 半监督聚类 auxiliary space primary space cost function semi-supervised clustering
  • 相关文献

参考文献9

  • 1Sinkkonen J,Kaski S.Clustering based on conditional distributions in an auxiliary space[J].Neural Computation,2001 (14):217-239.
  • 2Sinkkonen J,Kaski S.Clustering by similarity in an auxiliary space[C]//Proceedings of IDEAL 2000,Second International Conference on Intelligent Data Engineering and Automated Learning.[S.l.]:Springer,2000.
  • 3Peltonen J.Data exploration with learning metrics[D].Helsinki University of Technology,Dissertations in Computer and Information Science,Report D7,Espoo,Finland,2004.
  • 4Banerjee A,Dhillon I S,Ghosh J,et al.Clustering on the unit hypersphere using von Mises-Fisher distributions[J].Journal of Machine Learning Research,2005(6):1345-1382.
  • 5Theodoridis S,Koutroumbas K.模式识别[M].李晶皎,朱志良,王爱侠,等译.2版.北京:电子工业出版社,2004.
  • 6Duda R O,Hart P E,Stork D.模式分类[M].李宏东,姚天翔,译.2版.北京:机械工业出版社,中信出版社,2003.
  • 7Kaski S.Convergence of a stochastic semisupervised clustering algorithm,Technical Report A62[R].Helsinki University of Technology,Publications in Computer and Information Science,Espoo,Finland,November 2000.
  • 8Dhillon I S,Modha E M,Roshan U.Diametrical clustering for identifying anti-correlated gene clusters[J].Bioinformatics,2003,19(13):1612-1619.
  • 9张阳德.生物信息学[M].北京:科学出版社,2005.

共引文献4

同被引文献24

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部