期刊文献+

一种滤波修正的K均值分割方法

K-means based segmentation method using anisotropic diffusion
下载PDF
导出
摘要 许多传统的图像分割方法都需要输入用户难以理解的参数,而且这些参数对于结果的影响又比较大。基于聚类分析技术的方法对参数不敏感,简单而且高效,但因其专注于对单一特征空间的划分而无法同时保持区域均一性和空间紧致性。尽管已经出现了许多改进的方法,如采用进行空间约束的聚类方法和使用其它保持空间紧致性的方法进行结果修正等,不过不同空间划分之间的协调、新的参数复杂性和算法复杂性反而使得聚类分析技术失去其简单有效的优势。给出一种新的医学图像分割算法,通过结合K均值方法和各向异性滤波技术,保持图像空间紧致性并解决过分割和图像噪声问题,同时弱对象也能够被提取出来。对比实验以及应用表明,该算法具有良好的分割结果和性能。 Many traditional image segmentation algorithms require input parameters which are hard to determine but have a significant influence on the segmentation result.Clustering techniques based methods are simple,efficient and insensitive to parameters but they focus on the feature space and can't keep the balance of region homogeneity and spatial compactness,Though a lot of effort has been devoted such as spatial guided clustering analysis and posteriors refinement with spatial constrained method,the weights of different feature space and complexity introduced by using other techniques are still waiting to be resolved.Here we propose another medical image segmentation method which combines the K-means method and curvature anisotropic diffusion filter to take care of the balance as well as over-segmentation and noise problem.And weak object will also be easier to be extracted.The experiments show encouraging results in applicability and reliability of the proposed algorithm.
出处 《计算机工程与应用》 CSCD 北大核心 2007年第23期226-228,248,共4页 Computer Engineering and Applications
关键词 图像分割 聚类分析 各向异性滤波 弱对象分割 image segmentation cluster analysis anisotropic diffusion weak object segmentation
  • 相关文献

参考文献13

  • 1Pal N R,Pal S K.A review on image segmentation techniques[J].Pattern Recognition,1993,26(9):1277-1294.
  • 2Olabarriaga S D,Smeulders A W M.Interaction in the segmentation of medical images:a survey[J].Medical Image Analysis,2001,5(2):127-142.
  • 3Lucchese L,Mitra S K.Color image segmentation:a state-of-the-art survey[C]//Proceedings of the Indian National Science Academy (INSA-A),New Delhi,2001,67(2):207-221.
  • 4Pappas T N.An adaptive clustering algorithm for image segmentation[J].IEEE Transactions on Signal Processing,1992,SP-40(4):901-914.
  • 5Chang M M,Sezan I,Tekalp M.Adaptive Bayesian segmentation of color images[J].Journal of Electronic Imaging,1994,3(4):404-414.
  • 6Saber E,Tekalp A M,Bozdagi G.Fusion of color and edge information for improved segmentation and edge linking[C]//Proceedings of 1996 IEEE International Conference on Acoustics(ICASSP'96),Speech and Signal Processing,Atlanta,1996,4:2176-2179.
  • 7Luo J,Gray R T,Lee H C.Towards physics-based segmentation of photographic color image[C]//Proceedings of 1997 International Conference on Image Processing (ICIP'97),Santa Barbara,1997,3:58-61.
  • 8Luo M,Ma Y F,Zhang H J.A spatial constrained K-means approach to image segmentation[C]//Fourth IEEE Pacific-Rim Conference on Multimedia,2003,2:738-742.
  • 9Perona P,Malik J.Scale-space and edge detection using anisotropic diffusion[J].IEEE Transactions on Pattern Analysis Machine Intelligence,1990,12:629-639.
  • 10陆剑锋,林海,潘志庚.自适应区域生长算法在医学图像分割中的应用[J].计算机辅助设计与图形学学报,2005,17(10):2168-2173. 被引量:69

二级参考文献23

  • 1A Elmoataz,M Revenu,C Porquet. Segmentation and classification of various types of cells in cytological images[C].In:Proc int conf image processing applicat, 1992: 385~388.
  • 2Haralick RM,Shapiw LG. Survey Image segmentation techniques. CVGP,1985 ;29:100.
  • 3Chen C T.Medical image segmentation by a constrain satisfaction neural network[J].IEEE Trans Nucl Sci,1991 ;38(2):678.
  • 4J F CannyA Computational Approach to Edge Detection[J].IEEE Trans PAMI-8,1986; 6: 679~689.
  • 5Gang Liu,Robert M Haralick.Two Practical Issues in Canny Detector Implementation. IEEE Trans ,2002.
  • 6P Perona,J Malik. Scale-space and edge deection using anisotropic deffusion[J].IEEE Trans Patterm Anal, Mach Intell, 1990; 12:629~639.
  • 7Lee C, Hun S, Ketter T A, et al. Unsupervised connectivitybased thresholding segmentation of midsagittal brain MR images[J]. Computers in Biology and Medicine, 1998, 28(3): 309~338.
  • 8McInerney T, Terzopoulos D. Deformable models in medical image analysis: A survey [J]. Medical Image Analysis, 1996, 1(2): 91~108.
  • 9Orphanoudakis S C, Tziritas G, Haris K. A hybrid algorithm for the segmentation of 2D/3D images [A]. In: Proceedings of International Conference on Information Processing in Medical Imaging, Brest, 1995. 385~386.
  • 10Pohle R, Toennies K D. Segmentation of medical images using adaptive region growing [A]. In: Proceedings of SPIE,Boston, Massachusetts, 2001, 4322: 1337~1346.

共引文献70

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部