摘要
设ρ是有限非空集X上的一个凸等价关系,R是商集X/ρ的一个横截集.对X上的保序全变换半群O(X)的子半群O(X,ρ,R)={α∈O(X)|RαR且(x,y)∈ρ(xα,yα)∈ρ},在此证明了O(X,ρ,R)是O(X)的以幂等元为中心的子半群,并且刻划出它的格林关系.
Let ρ be an equivalence relation on the finite set X,and let R be a cross-section of the partition X/ρ,consider the following subsemigroup:
O(X,ρ,R) = {a∈ O(X);Ra lohtain in R and(x,y) ∈ ρ=〉(xa, ya) ∈ ρ}
of the order-preserving transformation semigroup O(X) on X. We prove that the semigroups O(X,ρ,R) are the same as the centralizers of idempotent order-preserving transformations,and describe the green's relation on O(X,ρ,R).
出处
《杭州师范学院学报(自然科学版)》
2007年第4期254-258,共5页
Journal of Hangzhou Teachers College(Natural Science)
关键词
格林关系
保序全变换半群
凸等价关系
green's relation
order-preserving transformations semigroup
centralizers of idempotents