期刊文献+

基于点集优化和干扰点模糊化的车道线识别 被引量:1

Lane Detection Based on Points Set Optimization and Disturbance Set Fuzzying
下载PDF
导出
摘要 提出了一种抗干扰车道线识别方法,通过对车道线点集的优化,能够去除道路上行驶的其他车辆造成的干扰。优化过程主要包括点集元素的预挑选、干扰点的去除以及有效点的补充。在干扰点去除的过程中,针对车辆边界很难精确定位的问题,对干扰点集进行了模糊化处理,引入隶属度函数对点集中元素的干扰程度进行描述。多工况试验证明,车道线识别方法能够稳定地对车道线进行识别,准确地提取车道线参数,并且算法体现出了对车辆干扰的良好抵抗能力。 An anti-disturbance lane detection method combined with vehicle detection was proposed. By the optimization of lane points set, the disturbance caused by other vehicles driving on the road can be eliminated. The optimization process included the pre-selection of points set members, the elimination of disturbance points and the complement of valid lane points. During the disturbance elimination, in order to solve the problem that the vehicle borders are hard to be located accurately, the fuzzy disturbance set was introduced and the membership degree was used to describe the disturbance degree of points set elements. Experiments under various conditions show that the lane detection method can recognize lanes steadily, obtain lane parameters accurately, and the algorithm owns resistance ability to vehicles disturbance.
出处 《中国机械工程》 EI CAS CSCD 北大核心 2007年第15期1872-1876,共5页 China Mechanical Engineering
基金 国家"十五"科技攻关项目(2002BA404A21) 清华大学青年基金资助项目(JC2007015)
关键词 车道线识别 车辆识别 模糊集 智能汽车 lane detection vehicle detection fuzzy set intelligent vehicle
  • 相关文献

参考文献12

  • 1Beauvais M,Lakshmanan S.CLARK:A Heterogeneous Sensor Fusion Method for Finding Lanes and Obstacles[J].Image and Vision Computing,2000,18(5):397-413.
  • 2曾智洪.高速公路中的行车道检测和车辆跟踪(英文)[J].自动化学报,2003,29(3):450-456. 被引量:11
  • 3Bertozzi M,Broggi A.GOLD:A Parallel Real-time Stereo Vision System for Generic Obstacle and Lane Detection[J].IEEE Transactions on Image Processing,1998,7(1):62-80.
  • 4Nedevschi S,Schmidt R,Graf T,et al.3D Lane Detection System Based on Stereovision[C]// Proceedings of IEEE Conference on Intelligent Transportation Systems.Washington D C,United States:IEEE Press,2004:161-166.
  • 5Chiu K Y,Lin S F.Lane Detection Using Color-based Segmentation[C]// Proceedings of Intelligent Vehicles Symposium.Las Vegas,Nevada,USA:IEEE Press,2005:706-711.
  • 6Yim Y U,Oh S Y.Three-feature Based Automatic Lane Detection Algorithm (TFALDA) for Autonomous Driving[J].IEEE Transactions on Intelligent Transportation Systems,2003,4(4):219-225.
  • 7Li Q,Zheng N N,Cheng H.Springrobot:a Prototype Autonomous Vehicle and Its Algorithms for Lane Detection[J].IEEE Transactions on Intelligent Transportation Systems,2004,5(4):300-308.
  • 8李旭,张为公,卞晓东.Research on detection of lane based on machine vision[J].Journal of Southeast University(English Edition),2004,20(2):176-180. 被引量:6
  • 9Thomas B,Cristobal C,Johann E,et al.Image Processing and Behavior Planning for Intelligent Vehicles[J].IEEE Transactions on Industrial Electronics,2003,50(1):62-75.
  • 10Freeman W T,Adelson E H.The Design and Use of Steerable Filters[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,1991,13(9):891-906.

二级参考文献30

  • 1Bertozzi M, Broggi A. GOLD: A parallel real time stereo vision system for generic obstacle and lane detection.IEEE Transactions on Image Processing, 1998,7(1): 62-81.
  • 2Tan T N, Sullivan G D, Baker K D. Model-based localization and recognition of road vehicle. International Journal of Computer Visoin, 1998,27(1): 5-25.
  • 3Tan T N, Baker K D. Efficient image gradient based vehicle location. IEEE Transactions on Image Processing,2000, 9(8) : 1343- 1356.
  • 4Press W S, Teukolsky S A, Vetterling W T, Flannery B P. Numerical Recipes in C(2nd Edition). London: Cambridge University Press, 1992.
  • 5Bertozzi M, Broggi A, Fascioli A. Vision-based intelligent vehicles: State of the art and perspectives. Journal of Robotics and Autonomous Systems, 2000.32(1) :1 - 16.
  • 6Masaki I Editor. Vision-Based Vehicle Guidance. Berlin: Springer Verlay, 1992.
  • 7Weber J, Koller D. l.uong Q T. Malik J. An integrated stereo-based approach to automatic vehicle guidance. In:Proceedings of ICCV. 1995. 12--20.
  • 8Smith S, Brady J. ASSET-2 : Real time motion segmentation and shape tracking. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1995,17(8) : 814-829.
  • 9Bertozzi M, Broggi A, Castelluccio S. A real lime oriented system for vehicle detection. Journal of Systems Architecture, 1997. 43(2) :317--325.
  • 10Ferryman J M, Maybank S J, Worrall A D. Visual surveillance for moving vehicles. International Journal of Computer Visoin, 2000,37(2):187-198.

共引文献38

同被引文献4

引证文献1

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部