摘要
当s∈R,0<q,p<∞,0<β≤∞且m ax{-n/q,-(nδ2)/(qδ1)}<α时,定义了加权H erz-type T riebe l-L i-zork in空间K,qαpFsβ(Rn,w1,w2)和K.,qαpFsβ(Rn,w1,w2),并给出这些空间的一些特征及在这些空间上的H ard-L ittlew ood极大算子不等式.
In this paper, let s ∈ R,0,〈q, p〈∈∞,0,〈β≤∞and max{-n/q,-nδ2/qδ1}〈a. Some properties on weighted Herz-type Triebel-Lizorkin spaces are given. The authors establish the weighted norm inequslities in the set for the Hardy-Littlewood maximal operator.
出处
《新疆大学学报(自然科学版)》
CAS
2007年第3期299-303,共5页
Journal of Xinjiang University(Natural Science Edition)
基金
Project 10261007 Sported by NSFC,Supported by SF of X.j.university:QN040105