期刊文献+

无线传感网络多分类支持向量机设备状态识别 被引量:2

Equipment condition recognition with multi-category support vector machine in wireless sensor networks
下载PDF
导出
摘要 无线传感网络由大量传感节点组成,以自组织方式构成网络,通过协作测量获取监测对象的详细信息。基于无线传感网络的生产设备状态识别方法具有可靠性高和柔性好的特点。针对工业生产特点,建立分簇结构的能量异质性无线传感网络模型,并应用于旋转机械设备故障状态的监测识别。采用小波包分解提取故障特征,通过多分类支持向量机对设备状态进行识别。实验表明上述方法能有效地对旋转机械设备故障状态进行在线监测识别,并能适应监测环境的动态变化,是一种可靠性高、柔性好的监测识别方法。 Wireless sensor networks consist of numerous sensor nodes that autonomously form networks and collaboratively perform measurement. Equipment monitoring with wireless sensor networks is highly reliable and flexible. An energy heterogeneous and clustered network model is proposed. It is used for rotary mechanical equipment condition recognition. Wavelet packet is employed to extract features. Multi-category support vector machine is used for condition recognition. Experiments show the method is reliable and flexible. It efficiently performs online recognition and dynamically adapts to environmental changes.
出处 《电测与仪表》 北大核心 2007年第7期20-24,36,共6页 Electrical Measurement & Instrumentation
基金 国家重点基础研究发展计划973资助项目(2006CB303000) 国家自然科学基金资助项目(60673176 60373014 50175056)
关键词 无线传感网络 设备监测 状态识别 多分类支持向量机 wireless sensor networks equipment monitoring condition recognition multicategory support vector machine
  • 引文网络
  • 相关文献

参考文献7

  • 1A.Willig,K.Matheus,A.Wolisz.Wireless technology in industrial networks[C].Proceedings of IEEE.2005,93(6):1130-1151.
  • 2N.Ota,P.Wright.Trends in wireless sensor networks for manufacturing[J].International Journal of Manufacturing Research,2006,1(1):3-17.
  • 3L.Krishnamurthy,R.Adler,P.Buonadonna,et al.Design and deployment of industrial sensor networks:experiences from a semiconductor plant and the North Sea[C].Proc.of the 3rd international conference on Embedded networked sensor systems,2005:64-75.
  • 4郭前进,于海斌,徐皑冬.基于状态维修的开放系统研究与实现[J].计算机集成制造系统,2005,11(3):416-421. 被引量:17
  • 5沈波,张世永,钟亦平.无线传感器网络分簇路由协议[J].软件学报,2006,17(7):1588-1600. 被引量:267
  • 6J.Zhang,R.X.Li,P.Han.Wavelet packet feature extraction for vibration monitoring and fault diagnosis of turbo-generator[C].Proc.of the Second International Conference on Machine Learning and Cybernetics.2003:76-80.
  • 7C.W.Hsu,C.J.Lin.A comparison of methods for multi-class support vector machines[J].IEEE Trans.on Neural Networks,2002,13:415-425.

二级参考文献14

  • 1于海斌,曾鹏,王忠锋,梁英,尚志军.分布式无线传感器网络通信协议研究[J].通信学报,2004,25(10):102-110. 被引量:119
  • 2林亚平,王雷,陈宇,张锦,陈治平,童调生.传感器网络中一种分布式数据汇聚层次路由算法[J].电子学报,2004,32(11):1801-1805. 被引量:46
  • 3郑增威,吴朝晖,林怀忠,郑扣根.可靠传感网聚类路由算法研究[J].浙江大学学报(工学版),2005,39(10):1461-1464. 被引量:14
  • 4张卿,谢志鹏,凌波,孙未未,施伯乐.一种传感器网络最大化生命周期数据收集算法(英文)[J].软件学报,2005,16(11):1946-1957. 被引量:18
  • 5刘明,龚海刚,毛莺池,陈力军,谢立.高效节能的传感器网络数据收集和聚合协议[J].软件学报,2005,16(12):2106-2116. 被引量:65
  • 6LEBOLD M S, REICHARD K M, FERULLO D,et al. Open system architecture for condition-based maintenance: overview and training material[EB/OL]. http://www. osacbm.org/Documents/Training/TrainingMaterial/TrainingDocument/OSACBM_Training_Outline_Ver48. pdf, 2003- 03.
  • 7THURSTON M,LEBOLD M. Standards development for condition- based maintenance systems, improving productivity through applications of condition Monitoring[A]. Proceedings of the 55th Meeting of the Society for Machinery Failure Prevention Technology[C]. Winchester, VA: MFPT Society Press,2001. 363-374.
  • 8LEBOLD M,THURSTON M. Open standards for conditionbased maintenance and prognostic systems[EB/OL]. http://www. osacbm. org/documents/confpapers/MARCON2001. OS ACBM_ Final Paper. pdf,2001-05.
  • 9OpenO&M^TM For Manufacturing Joint Working Group. Condition based operations for manufacturing [EB/OL]. http://www. mimosa. org/papers, 2004- 10- 05.
  • 10DEB S, GHOSHAL S. Remote diagnosis server architecture[A]. Proceedings of IEEE Autotestcon, Valley Forge[C].Piscataway, NJ, USA: IEEE Press, 2001. 988- 998.

共引文献282

同被引文献24

  • 1陈贵海,李成法,叶懋,吴杰.EECS:一种无线传感器网络中节能的聚类方案[J].计算机科学与探索,2007,1(2):170-179. 被引量:24
  • 2Wheelwright, L. The network centric test system [J]. Aerospace and Electronic Systems Magazine, 2004, 14-18.
  • 3Chen Zhigang, Zeng Zhiwen, Tang Xiaolong. Analysing three tier C/S application with the LPT algorithm [A]. The 4th International Conference/ Exhibition on High Performance Computing in the Asia-Pacific Region, 2000, 570-571.
  • 4Weihong Li, Lifang Peng. Upgrade ERP from C/S to B/S based on web service [A]. International Conference on Services Systems and Services Management, 2005, 593-597.
  • 5Zhenyu Cai, Shudong Wang, Xiaozhan Peng, et al. Remote sensing image information issue based on C-S arid B-S [A]. Proceedings of International Geoscience and Remote Sensing Symposium, 2005, 780-783.
  • 6Adaehi, T., Pramaniek, A., Elston, M. Parallel, multi-dut testing in an open architecture test system [A]. IEEE International Conference on Test, 2005, 882-890.
  • 7Phillips, I., Parish, D., Sandford, M., et al. Architecture for the Management and Presentation of Communication Network Performance Data[J]. IEEE Transactions on Instrumentation and Measurement, 2006, 931-938.
  • 8McCarthy, A.B., Faya Peng. Comparing GPIB, LAN/LXI, PCI/PXI Measurement Performance in Hybrid Systems[A]. Systems Readiness Technology Conference, 2006, 122-128.
  • 9McHugh, M., Cluer, S., Defiler, J. Advanced virtual instrument test system (AVITS)[M].Autotestcon,2005, 48-353.
  • 10Grattan KTV, Sun T. Fiber Optic Sensor Technology: a Review [J]. Sensors and Actuators, 2000, 82: 40-61.

引证文献2

二级引证文献5

;
使用帮助 返回顶部