期刊文献+

利用核方法的直扩系统多个窄带干扰抑制 被引量:2

Suppression of multiple narrowband interferences using kernel methods in DSSS
下载PDF
导出
摘要 针对直扩通信中存在多个窄带干扰的情况,提出一种利用核独立分量分析的窄带干扰抑制算法.该算法利用核方法,以重建希尔伯特空间的典型相关为对比函数(通过期望用户扩频码初始化解混矩阵,在信源分离同时得到期望信号,实现干扰抑制).由于该算法只需直扩信号与干扰信号相互独立,且服从高斯分布的信号不多于一个,这在实际中很容易满足,因此适用性广.仿真结果验证了该方法对抑制多个独立窄带干扰是有效的. This paper proposes an algorithm for suppressing the multiple narrowband interferences using kernel independent component analysis (KICA) in direct sequence spread spectrum systems. Combining with the kernel methods the algorithm uses canonical correlations in a reproducing kernel Hilbert space (RKHS) as the contrast function. By initializing the demixing matrix using the pseudocode of the expected user, the algorithm realizes the separation of source signals and at the same time the expected user is obtained. As the restrictions are mutually independent of the spread spectrum signal and interferences, which can be easily satisfied in practice, the algorithm is useful for suppressing various NBIs. The simulation results verify the effectiveness of the algorithm.
出处 《西安电子科技大学学报》 EI CAS CSCD 北大核心 2007年第4期554-557,576,共5页 Journal of Xidian University
基金 国家自然科学基金资助(60572148)
关键词 窄带干扰 核方法 独立分量分析 典型相关 narrowband interference kernel methods independent component analysis canonical correlation
  • 相关文献

参考文献1

二级参考文献15

  • 1Hyvarinen A, Oja E. Independcnt Component Analysis: Algorithm and Applications[J], Neural Networks, 2000, 13(4):411-430.
  • 2Cardoso J F. Blind Beamforming for Non-Gaussian Signals[J]. IEEE Proceeding-F, 1993, 140(6): 224-230.
  • 3Comon P. Independent Component Analysis, a New Concept? [J]. Signal Processing, 1994, 36(3): 287-314.
  • 4Bell A J, Sejnowsk T J. An Information-Maximization Approach to Blind Separation and Blind Deconvolution[J]. Neural Computation,1995, 7(6): 1129-1159.
  • 5Hyvarimen A, Oja E. A Fast Fixed-point Algorithm for Independent Component Analysis[J]. Neural Computation, 1997, 9(7): 1483-1492.
  • 6Lee T W, Bell A J, Orglmeister R. Blind Source Separation of Real World Signals[A]. Proc of ICNN[C]. Houston: ICNN, 1997.2129-2134.
  • 7Karhunen J, Hyvarinen A. Application of Neural Blind Separation to Signal and Image Processing[A]. Proc ICASSP[C]. Munich:[s.n.],1997. 131-134.
  • 8Sabhlin H, Broman H. Separation of Real-world Signals[J]. Signal Processing, 1998,64(2): 103-113.
  • 9Anil K, Robert P R, Mar Jianchang. Statistical Pattern Recognition: a Review[J]. IEEE Trans on Pattern Analysis and Machine Intelligence, 2000, 22(1): 4-37.
  • 10Wang Y, Zhang J, Wang Z, et al. Gene Selection by Machine Learning in Microarray Studies[R]. Washington: the Catholic University of America, 2001.

共引文献2

同被引文献17

  • 1郭道省,张邦宁.DSSS系统中应用HMM的窄带干扰抑制技术[J].系统仿真学报,2005,17(4):808-811. 被引量:7
  • 2Stefano B. Code-aided interference suppression for DS/ CDMA overlay systems [ J ]. Proceedings of the IEEE, 2002, 90(3): 394-435.
  • 3Sami A, Pertti H. Transform-selective interference suppression algorithm for spread-spectrum communications [J]. IEEE Signal Processing Letters, 2005, 12(1) : 49- 51.
  • 4Yuan J T, Lee J N. Narrow-band interference rejection in DS/CDMA systems using adaptive (QRD-LSL)-based nonlinear ACM interpolators[J]. IEEE Trans on Vehicular Technology, 2003, 52(2): 374-379.
  • 5Kapoor S, Gollamudi S, Nagaraj S, et al. Adaptive multiuser detection and beamforming for interference suppression in CDMA mobile radio system [ J ]. IEEE Trans Vehicular Technology, 1999, 48(5): 1341-1355.
  • 6Simon H. Adaptive filter theory[ M ]. Beijing: Publishing House of Electronics Industry, 2002. 492.
  • 7GONG M, LINT. Research of narrow-band interference suppression technologies in DSSS communication systems [J]. 5th International Conference on Wireless Communi- cations, 2009 : 1 - 5.
  • 8PEREZ-SOLANO J J, J FELICI-CASTELL S, PO- DRIGUEZ-HERNANDEZ M A. Narrowband interference suppression in frequency-hopping spread spectrum using undecimated wavelet packet transform [ J ]. IEEE Trans- actions on Vehicular Technology, 2008, 57 (3) : 1620 - 1629.
  • 9TAZEBAY M V, AKANSU A N, SHERMAN M J. A no- vel adaptive time-frequency excision technique for direct sequence spread spectrum communications [ J ]. Proceed- ings of the IEEE-SP International Symposium on Time- Frequency and Time-Scale Analysis, 1994 : 492 -495.
  • 10TAZEBAY M V, AKANSU A N. A performance analysis of interference excision techniques in direct sequence spread spectrum communications [ J ]. IEEE Transactions on Signal Processing, 1998: 2530- 2535.

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部