期刊文献+

Preimage Entropies of Semi-Flows

半流的原像熵(英文)
下载PDF
导出
摘要 In this paper, several preimage entropies for semi-flows on compact metric spaces are introduced and studied. We prove that most of these entropies are invariant in a certain sense under conjugacy when the semi-flows under consideration are free of fixed points. The relation between these entropies is studied and an inequality relating them is given. It is also shown that most of these entropies for semi-flow are consistent with that for the time-1 mapping. 本文对紧致度量空间上的连续半流引入了几类原像熵的定义,并对它们的性质进行了研究,证明了对于无不动点的连续半流而言,这些熵具有一定程度的拓扑共轭不变性,对这些熵的关系进行了研究并得到了联系这些熵的不等式,还证明了连续半流与其时刻1映射具有相同的拓扑熵和原像熵。
作者 张金莲
出处 《Journal of Mathematical Research and Exposition》 CSCD 北大核心 2007年第3期513-524,共12页 数学研究与评论(英文版)
基金 the Tianyuan-Mathematics Foundation of China(10426012) the Doctoral Foundation of Hebei Normal University(L2005B02).
关键词 seml-flow preimage entropy topological conjugacy 连续半流 原像熵 拓扑共轭
  • 相关文献

参考文献16

  • 1ADLER R,KONHEIM A,MCANDREW M.Topological entropy[J].Trans.Amer.Math.Soc.,1965,114:309-319.
  • 2BOWEN R.Entropy for group endomorphisms and homogenuous spaces[J].Trans.Amer.Math.Soc.,1971,153:401-414.
  • 3THOMAS R F.Entropy of expansive flows[J].Ergodic Theory Dynam.Systems,1987,7(4):611-625.
  • 4THOMAS R F.Topological entropy of fixed-point free flows[J].Trans.Amer.Math.Soc.,1990,319(2):601-618.
  • 5OHNO T.A weak equivalence and topological entropy[J].Publ.Res.Inst.Math.Sci.,1980,16(1):289-298.
  • 6SUN Wen-xiang.Measure-theoretic entropy for flows[J].Sci.China Ser.A,1997,27(5):419-425.
  • 7SUN Wen-xiang.EDSON V.Entropy of flows,revisited[J].Bol.Soc.Bras.Mat.,1999,30(3):315-333.
  • 8HE Lian-fa,LU Zhan-hui,WANG Fu-hai.et al.Topological pressure of continuous flows without fixed points[J],Dynamical Systems Proc.Int.Conf.in Honor Of Professor Liao Shantao,Singapore,New Jersey Inc.,1999,75-83.
  • 9HURLEY M.On topological entropy of maps[J].Ergodic Theory Dynam.Systems,1995,15(3):557-568.
  • 10NITECKI Z,PRZYTYCKI F.Preimage entropy for mappings[J].Internat.J.Bifur.Chaos Appl.Sci.Engrg.,1999,9(9):1815-1843.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部