期刊文献+

基于独立分量分析算法研究儿童癫痫脑电的混沌动力学特征 被引量:4

Research on Chaotic Behavior of Epilepsy Electroencephalogram of Children Based on Independent Component Analysis Algorithm
下载PDF
导出
摘要 首先采用独立分量分析(Independent component analysis,ICA)算法,将儿童癫痫信号从复杂的背景脑电(Electroencephalogram,EEG)中分离出来;然后采用了一维时间序列相空间重构技术和混沌的定量判据,对分离出来的独立分量信号进行了分析与计算.通过对生理和癫痫状态下独立分量信号的相图、功率谱、关联维数和Lyapunov指数的对比研究,得出如下结论:(1)EEG独立分量的相图、功率谱、关联维数和Lyapunov指数反映了大脑的总体动态特征,它们可作为一种定量指标衡量大脑的健康状态;(2)在正常的生理状态下EEG是混沌的,而在癫痫状态下则趋于有序。 In this paper, Independent component analysis (IGA) was first adopted to isolate the epileptiform signals from the background Electroencephalogram (EEG) signals. Then, by using the phase space reconstruct techniques from a time series and the quantitative criterions and rules of system chaos, different phases of the epileptiform signals were analyzed and calculated. Through the comparative research with the analyses of the phase plots, the power spectra, the computation of the correlation dimensions and the Lyapunov exponents of the physiologyical and the epileptiform signals, the following conclusions were drawn: (1)The phase plots, the power spectra, the correlation dimensions and the Lyapunov exponents of the EEG independent components reflect the general dynamical characteristics of brains, which can be taken as a quantitative index to weigh the healthy states of brains. (2) Under normal physiological conditions, the EEG signals are chaotic, while under epilepsy conditions the signals approach regularity.
出处 《生物医学工程学杂志》 EI CAS CSCD 北大核心 2007年第4期835-841,共7页 Journal of Biomedical Engineering
基金 国家自然科学基金资助项目(60573172) 辽宁省教育厅高等学校科学技术研究项目(20040081)
关键词 混沌 脑电 癫痫 独立分量分析 Chaos Electroencephalogram (EEG) Epilepsy Independent component analysis (ICA)
  • 相关文献

参考文献11

  • 1Litt B,Echauz J.Prediction of epileptic seizures.Lancet Neurology,2002, 1(1):22
  • 2Silva FH,Blanes W,Kalitzin SN,et al.Dynamical diseases of brain systems:Different routes to epileptic seizures.IEEE Trans on Biomedical Engineering,2003, 50(5):540
  • 3Ferri R,Parrino L,Smerieri A,et al.Nonlinear EEG measures during sleep:effects of the different sleep stages and cyclic alternating pattern.International Journal of Psychophysiology,2002, 43:273
  • 4Lehnertz K.Non-linear time series analysis of intracranial EEG recordings in patients with epilepsy-an overview.International Journal of Psychophysiology,1999, 34(1):45
  • 5Ferri R,Elia M,Musumeci SA,et al.Non-linear EEG analysis in children with epilepsy and electrical status epilepticus during slow-wave sleep(ESES).Clinical Neurophysiology,2001, 112(12):2274
  • 6Bell AJ,Sejnowski TJ.An information maximization approach to blind separation and blind deconvolution.Neural Computation,1995, 7(6):1129
  • 7Lee TW.Blind source separation of more sources than mixtures using overcomplete representations.IEEE Signal Processing Letters,1999, 6(4):87
  • 8Kobayashi K,James CJ,Nakahori T.Isolation of epileptiform discharges from unaveraged EEG by independent component analysis.Clinical Neurophysiology,1999, 110(10):1755
  • 9Grassberger P,Procaccia I.Characterization of strange attractors.Physical Review Letters,1983, 50(5):346
  • 10Almog Y,Oz O.Correlation dimension estimation:Can this nonlinear description contribute to the characterization of blood pressure control in rats? IEEE Trans On Biomedical Engineering,1999, 46(5):535

同被引文献22

  • 1李鸿光,孟光.基于经验模式分解的混沌干扰下谐波信号的提取方法[J].物理学报,2004,53(7):2069-2073. 被引量:13
  • 2李小兵,初孟,邱天爽,鲍海平.一种基于时频分析的癫痫脑电棘波检测方法[J].中国生物医学工程学报,2006,25(6):678-682. 被引量:4
  • 3宁艳,江朝晖,安滨,冯焕清.睡眠生理参数的去趋势波动分析[J].生物医学工程学杂志,2007,24(2):249-252. 被引量:9
  • 4Sankar R, Natour J. Automatic computer analysis of transients in EEG. Comput Biol Med, 1992, 22(6): 407-422.
  • 5Pradhan N, Dutt DN, Satyam SS. A mimetic-based frequency domain technique for automatic generation of EEG reports. Comput Biol Med, 1993, 23(1): 15-20.
  • 6Sukhi G, Gotman J. An automatic warning system for epileptic seizures recorded on intracerebral EEGs. Clin Neurophysiol, 2005, 116(10): 2460-2472.
  • 7Srinivasan V, Eswaran C, Sriraam N. Approximate entropy-based epileptic EEG detection using artificial neural networks. IEEE Trans Inform Technol Biomed Engin, 2007, 11(3): 288-295.
  • 8Nurujjaman M, Ramesh N, Sekar lyengar AN. Comparative study of nonlinear properties of EEG signals of normal persons and epileptic patients. Nonlin Biomed Phys, 2009, 3(1): 6.
  • 9Swiderski B, Osowski S, Rysz A. Lyapunov exponent of EEG signal for epileptic seizure characterization. Chaos,1995, 5(1): 82-87.
  • 10Peng CK, Buldyrev SV, Havlin S, Simons M, Stanley HE, Goldberger AL. Mosaic organization of DNA nucleotides. Phys Rev, 1994, 49(2): 1685-1689.

引证文献4

二级引证文献21

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部