期刊文献+

On the Construction of p-Harmonic Morphisms and Conformal Actions

On the Construction of p-Harmonic Morphisms and Conformal Actions
原文传递
导出
摘要 We produce p-harmonic morphisms by conformal foliations and Clifford systems. First, we give a useful criterion for a foliation on an m-dimensional Riemannian manifold locally generated by conformal fields to produce p-harmonic morphisms. By using this criterion we manufacture conformal foliations, with codimension not equal to p, which are locally the fibres of p-harmonic morphisms. Then we give a new approach for the construction of p-harmonic morphisms from R^m/{0} to R^n. By the well-known representation of Clifford algebras, we find an abundance of the new 2/3 (m + 1)-harmonic morphism Ф: R^m/{0} → R^n where m = 2κδ(n - 1). We produce p-harmonic morphisms by conformal foliations and Clifford systems. First, we give a useful criterion for a foliation on an m-dimensional Riemannian manifold locally generated by conformal fields to produce p-harmonic morphisms. By using this criterion we manufacture conformal foliations, with codimension not equal to p, which are locally the fibres of p-harmonic morphisms. Then we give a new approach for the construction of p-harmonic morphisms from R^m/{0} to R^n. By the well-known representation of Clifford algebras, we find an abundance of the new 2/3 (m + 1)-harmonic morphism Ф: R^m/{0} → R^n where m = 2κδ(n - 1).
出处 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2007年第8期1475-1484,共10页 数学学报(英文版)
基金 This work is supported by the National Natural Science Foundation of China(10471001)
关键词 p-harmonic morphism Clifford system homogeneous function conformal field p-harmonic morphism, Clifford system, homogeneous function, conformal field
  • 相关文献

参考文献10

  • 1Loubeau, E.: On p-harmonic morphisms. Differential Geometry and its Applications, 12, 219-229 (2000).
  • 2Mo, X.: The geometry of conformal foliations and p-harmonic morphisms. Math. Proc. Cambridge Phios. Soe., 135, 321-334 (2003).
  • 3Baird, P., Gudmundsson, S.: p-harmonic maps and minimal submanifolds. Math. Ann., 294, 611-624 (1992).
  • 4Tondeur, Th.: Geometry of foliations, Monographs in Mathematics 90, Birkhauser-Verlag, Basel, 1997.
  • 5Pantilie, R.: Conformal actions and harmonic morphisms. Math. Proc. Cambridge Phios. Soc., 129, 527-547 (2000).
  • 6Pantilie, R.: Harmonic morphisms with one-dimensional fibres. Internat. J. Math., 10, 457-501 (1999).
  • 7Pantilie, R.: Isometric actions and harmonic morphisms. Michigan Math. J., 47, 453-467 (2000).
  • 8Pantilie, R.: Harmonic morphisms with 1-dimensional fibres on 4-dimensional Einsten manifolds. Comm. Anal. Geom., 10, 779-814 (2002).
  • 9Wood, J. C.: Harmonic morphisms, foliations and Gauss maps. Complex Differential Geometry and Nonlinear Differential Equations, 145-183, Contemp. Math., 49 (Amer. Math. Soc., Providence, R.I., 1986).
  • 10Husemoller, D.: Fibre bundles, 3rd edn., Graduate Texts in Mathematics, Vol. 20, Springer, New York, (1st edn. McGraw Hill, New York, 1966).

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部