摘要
In this paper, we study the dynamical behavior for a 4-dimensional reversible system near its heteroclinic loop connecting a saddle-focus and a saddle. The existence of infinitely many reversible 1-homoclinic orbits to the saddle and 2-homoclinic orbits to the saddle-focus is shown. And it is also proved that, corresponding to each 1-homoclinic (resp. 2-homoclinic) orbit F, there is a spiral segment such that the associated orbits starting from the segment are all reversible 1-periodic (resp. 2-periodic) and accumulate onto F. Moreover, each 2-homoclinic orbit may be also accumulated by a sequence of reversible 4-homoclinic orbits.
In this paper, we study the dynamical behavior for a 4-dimensional reversible system near its heteroclinic loop connecting a saddle-focus and a saddle. The existence of infinitely many reversible 1-homoclinic orbits to the saddle and 2-homoclinic orbits to the saddle-focus is shown. And it is also proved that, corresponding to each 1-homoclinic (resp. 2-homoclinic) orbit F, there is a spiral segment such that the associated orbits starting from the segment are all reversible 1-periodic (resp. 2-periodic) and accumulate onto F. Moreover, each 2-homoclinic orbit may be also accumulated by a sequence of reversible 4-homoclinic orbits.
基金
Project supported by NNSFC under Grant 10371040
NNSFC under Grant 10371040
Jinan University Research Funds for Doctors(B0636)