期刊文献+

一类混沌系统的自适应滑模变结构控制 被引量:2

Adaptive Sliding Mode Variable Structure Control for a Class of Chaotic System
下载PDF
导出
摘要 从一类更广义的非线性混沌系统出发,以Lorenz系统为例研究了混沌系统的控制问题。设计了一种自适应滑模变结构控制律,用该控制律,即使系统存在输入饱和及外部扰动,也可以将混沌系统的状态渐近稳定到任意指定平衡点。数字仿真表明,其控制效果极好。 The control problem of chaotic system is investigated starting with a class of more generalized nonlinear chaotic system. An adaptive sliding mode variable structure control scheme for Lorenz chaos is presented. Using the proposed control scheme the state of chaotic system can be asymptotically driven to a appointed equilibrium point in spite of the presence of input saturation and external disturbance. Numerical simulations demonstrate the effectiveness of its application to chaotic system control.
出处 《空军工程大学学报(自然科学版)》 CSCD 北大核心 2007年第3期19-22,共4页 Journal of Air Force Engineering University(Natural Science Edition)
关键词 混沌 混沌控制 自适应滑模变结构控制 chaos chaotic control adaptive sliding mode variable structure control
  • 相关文献

参考文献11

  • 1孔令云,周凤岐.用三轴气浮台进行混沌控制与反控制研究[J].宇航学报,2007,28(1):99-102. 被引量:10
  • 2Kong L Y,Zhou F Q,Zhou J.The Control of Chaotic Attitude Motion of a Perturbed Spacecraft[A].Proceedings of the 25th Chinese Control Conference[C].Harbin:2006,166-172.
  • 3Vincent TL,Yu J.Control of a Chaotic System[J].Dyn Control,1991,1(1);35-52.
  • 4Luce R,Kernevez JP.Controllability of Lorenz Equation[J].Int Ser Numer Math,1991,97:257-259.
  • 5Yeap TH,Ahmed NU.Feedback Control of Chaotic Systems[J].Dyn Control,1994,4(1):97-114.
  • 6李刚,刘兴堂,徐安民.智能控制理论及发展[J].空军工程大学学报(自然科学版),2003,4(3):75-78. 被引量:10
  • 7Gallegos JA.Nonlinear Regulation of Lorenz System by Feedback Linearization Techniques[J].Dyn Control,1994,4(1):126-134.
  • 8Fuh CC,Tung PC.Controlling Chaos Using Differential Geometric Method[J].Phys Rev Lett,1995,75:2952-2957.
  • 9Zeng Y,Singh SN.Adaptive Control of Chaos in Lorenz system[J].Dyn Control 1997,7(1):143-154.
  • 10Ge SS,Wang C.Adaptive Backstepping Control of Class of Chaotic Systems[J].Int J Bifurcat Chaos,2000,10(5):286-300.

二级参考文献12

  • 1CHEN G R,LAI D.Feed black anti-control of discrete chaos[J].Int.J.Bifur.Chaos,1998(7):1585-1590
  • 2Yang Z,LIU Y Z,CHEN G R.Chaotifying a continous-time system via impulsive input[J].Int.J.Bifur.Chaos,2002,12(5):1121-1128]
  • 3WANG X F,CHEN G R,YU X.Anti-control of chaos in continous-time systems via time-delay feedback[J].Chaos,2000,10(4):771-779
  • 4Beletsky V V,Pivovarov M L,Starostin E L.Regular and chaotic motions in applied dynamics of a rigid body,Chaos,1996,6(2):155-166
  • 5CHEN L Q,LIU Y Z.Chaotic attitude motion of a magnetic rigid spacecraft and its control[J].International Journal of Nonlinear Mechanics,2002,37(3):493-504
  • 6Alban P M Tsui,Antonia J Jones.The control of higher dimensional chaos:comparative results for the chaotic satellite attitude control problem,Physica D,2000,135:41-62
  • 7KUANG J L,Meehan P A,Leung A Y T.Suppressing chaos via Lyapunov Krasovskii's method.Chaos,Solitons and Fractals,2006,27:1408-1414
  • 8Dracopoulos D C,Jones A J.Adaptive neuro-genetic control of chaos applied to the attitude control problem,Neural Comp.Appl,1997,6(2):102-115
  • 9王忠勇,蔡远利,贾冬,刘文江.混沌系统的神经网络控制[J].控制与决策,2000,15(1):55-58. 被引量:17
  • 10杨林保,杨涛.陈氏混沌系统的采样数据反馈控制[J].物理学报,2000,49(6):1039-1042. 被引量:8

共引文献78

同被引文献16

  • 1周凤岐,孔令云.欧拉动力学方程中的新混沌吸引子及其分析[J].宇航学报,2007,28(6):1515-1519. 被引量:13
  • 2瞿少成,王永骥.基于主动滑模控制的一类不确定混沌系统的同步[J].计算机工程与应用,2006,42(1):180-182. 被引量:5
  • 3孔令云,周凤岐.用三轴气浮台进行混沌控制与反控制研究[J].宇航学报,2007,28(1):99-102. 被引量:10
  • 4Leipnik R B,Newton T A.Double strange attractors in rigid body motion with linear feedback control[J].Phys Lett A, 1981,86:63-67.
  • 5Marlin B A.Periodic orbits in the Newton-Leipnik system[J].Int J Bifurc Chaos,2002,12: 511-523.
  • 6Chen S,Zhang Q,Xie J,et al.A stable-manifold-based method for chaos control and synchronization[J].Chaos,Solitons & Fractals,2004, 20: 654-947:.
  • 7Richter H.Controlling chaotic system with multiple strange attractors[J].Phys Lett A,2002,300:188.
  • 8Wang X,Tian L.Bifurcation analysis and linear control of the Newton-Leipnik system[J].Chaos,Solitons & Fractals,2006,27:31-38.
  • 9Jia Q.Chaos control and synchronization of the Newton Leipnik chaotic system[J].Chaos,Solitons & Fractals,2008,35:814-824.
  • 10Sheu L J,Chen H K.Chaos in the Newton-Leipnik system with fractional order[J].Chaos,Solitons & Fractals,2008,36:98-103.

引证文献2

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部