期刊文献+

支持向量机在电液伺服系统辨识建模中的应用 被引量:6

Application of Support Vector Machines in the Electro Hydraulic Servo System Identification Modeling
下载PDF
导出
摘要 提出了电液伺服系统的支持向量机的辨识建模方法。利用电液伺服系统的可测参量,建立了基于支持向量机的电液伺服系统的模型。以电液位置伺服系统为例,进行了仿真实验。仿真结果表明支持向量机模型具有辨识精度高,推广性能好的优点,从而验证了该方法的正确性和有效性。 A method of the electro hydraulic servo system identification modeling is presented based on support vector machines. The model of the electro hydraulic servo system based on support vector machine is established by using the measurable parameters of the system. The simulation test is carried out for electro hydraulic position servo system. The results show that the model of support vector machine has the advantage of high identification precision and of good generalization characteristic. So the method mentioned above is valid.
出处 《空军工程大学学报(自然科学版)》 CSCD 北大核心 2007年第3期43-45,共3页 Journal of Air Force Engineering University(Natural Science Edition)
关键词 支持向量机 回归型支持向量机 电液伺服系统 系统辨识 support vector machine support vector regression electro hydraulic servo system system identification
  • 相关文献

参考文献7

二级参考文献24

  • 1杨国桢 等.飞机液压传动与控制[M].西安:空军工程学院出版社,1997..
  • 2张学工译.统计学习理论的本质[M].北京:清华大学出版社,2000..
  • 3Schlkopf B, Smola A. A Tutorial on Support Vector Regression [R]. NeuroCOLT2 Technical Report Series NC2-TR-1998-030, October, 1998.
  • 4Vapnik V. The Nature of Statistical Learning Theory [ M ]. New York: Springer, 1995.
  • 5Vapnik V. Statistical Learning Theory [ M]. New York: Springer,1998.
  • 6Scholkopf B, Smola A J. New support vector algorithms [ J ].Neural Computation, 2000, 12(5): 1207 ~1245.
  • 7Martin M. On-line Support Vector Machines for Function Approximation [R]. Barcelona: Software Department, Universitat Politecnica de Catalunya, 2002.
  • 8Ma J S, Theiler J, Perkins S. Accurate on-line support vector regression [J]. Neural Computation, 2003, 15(11): 2683 ~2704.
  • 9Mackay D J C. Probable network and plausible predictions -a review of practical Bayesian methods for supervised neural networks [J]. Network: Computation in Neural Systems, 1995,6(3 ): 469~ 505.
  • 10王永骥 涂健.神经元网络控制[M].北京:机械工业出版社,1999..

共引文献148

同被引文献55

引证文献6

二级引证文献38

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部