期刊文献+

基于蚁群算法的网格资源调度策略研究 被引量:8

Study of grid resource scheduling strategy based on ant colony algorithm
下载PDF
导出
摘要 网格计算中的资源调度技术是连接网格底层和高层功能的纽带。蚁群算法作为一种成熟的分布式、启发式搜索算法,其实质上是一种通过群体智能间接散布最优解信息,采用逐步收敛的方式求解最优解的算法。通过介绍蚁群算法的原理,对使用蚁群算法作为网格计算资源调度策略的可行性进行了分析,并在此基础上探讨了基于蚁群算法的网格计算资源调度的设计思路、运作流程、需要考虑的信息素更新方式等关键问题,最后给出了基于蚁群算法的网格计算资源调度总控程序。 Resource schedulingtechnology of fgrid computing interconnects grid bottom and top functions. Ant colony algorithm (ACA), as a sort of mature distributing and heuristic search algorithm, which is essentially an algorithm of seeking the best result through distri- buting optimized information between colony members and converging gradually to final optimization, By introducing the basic theory of ACA, the feasibility analysis of grid resource scheduling in ant colony algorithm is proposed. Based on this, some important problems are brought forward such as design ideas, operational process and pheromone updating, At the end, the control program of grid resource scheduling strategy based on ACA is present.
出处 《计算机工程与设计》 CSCD 北大核心 2007年第15期3611-3612,3694,共3页 Computer Engineering and Design
关键词 网格计算 资源调度 蚁群算法 信息素 总控程序 grid computing resource scheduling ant colony algorithm pheromone control program
  • 相关文献

参考文献7

二级参考文献31

  • 1[1]DORIGO M,GIANNI DI CARO,STUTZLE T.Ant algorithms[J].Future Generation Computer System,2000,16:5-7.
  • 2[2]LUCA DM,GAMBERDELLA M.Ant colony for the traveling salesman problem[R].TR/IRIDIA/1996-5,IRIDIA,Universite Libre de Bruxelles,1997.
  • 3[3]STUTZLE T,HOOS HH.MAX-MIN Ant System[J].Future Generation Computer System,2000,16:889-914.
  • 4[1]Dorigo M, Maniezzo V, Colorni A. Positive Feedback as a Search Strategy[R]. Milan: Milan Politecnico di Milano, 1991.91-106.
  • 5[2]Dorigo M, Maniezzo V, Colorni A. Ant System: Optimization by a Colony of Cooperating Agents[J]. IEEE Transactions on Systems, Man and Cybernetics, part B, 1996, 26(1): 29-41.
  • 6[3]Gambardella L M, Taillard E D, Dorigo M. Ant Colonies for the Quadratic Assignment Problem[J]. Journal of the Operational Research Society, 1999, 50(2): 167-176.
  • 7[4]Bullnheimer B, Hartl R F, Strauss C. Applying the Ant System to the Vehicle Routing Problem[A]. Voss S, Martello S, Osman I H, Roucairol C. Meta-heuristics: Advances and Trends in Local Search Paradigms for Optimization[C]. Boston: Kluwer, 1998. 109-120.
  • 8[5]Costa D, Hertz A. Ants can Color Graphs[J]. Journal of the Operational Research Society, 1997, 48: 295-305.
  • 9[6]Parmee I C, Vekeria H, Bilchev G. Role of Evolutionary and Adaptive Search during Whole System, Constrained and Detailed Design Optimization[J]. Engineering Optimization, 1997, 29(1-4): 151-176.
  • 10[7]Wang Lei, Wu Qidi. Ant System Algorithm for Optimization in Continuous Space[A]. Proceedings of the 2001 IEEE International Conference on Control Applications[C]. New York: IEEE Press, 2001. 395-400.

共引文献74

同被引文献49

引证文献8

二级引证文献78

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部