期刊文献+

基于遗传编程的SMT机器视觉检测特征提取 被引量:1

Feature extraction of SMT machine vision inspection based on genetic programming
下载PDF
导出
摘要 在印刷电路板贴片安装的机器视觉检测中,贴片元件的型号识别和缺陷检测都是基于CCD采集的图像,数据量大、维数太多,该图像特征的提取是正确检测识别的关键技术之一。遗传编程通过遗传优化可以从原始数据或传统的高维特征中提取出更能反映类别本质的有效特征,降低特征维数、减少分类器的计算成本,同时提高分类识别精度。设计基于遗传编程的特征提取方案用于该机器视觉检测,并改进了特征评价指标。对比实验验证了本方案提取的特征分别用于ANN和SVM的良好分类识别效果。 Feature extraction is one ofthe major key technologies in pattem recognition. In automatic machine vision inspection for PCB SMT assembly, components recognition and default inspection are both based on digital images, which contain too large data or too high dimensions. Effective features extracted from raw data or existing features based on genetic programming, which utilizes genetic optimization, can reduce features dimensions, decrease classifier's computing cost, meanwhile improves discrimination capability. A feature extraction approach based on genetic programming is developed for SMT machine vision inspection and fast feature evaluation method based on the well-known Fisher criterion is improved. Contrast experiments show effective classification results using GP extracted features for ANN and SVM classifiers.
出处 《计算机工程与设计》 CSCD 北大核心 2007年第15期3776-3779,共4页 Computer Engineering and Design
关键词 特征提取 遗传编程 机器视觉 模式识别 自动视觉检测 feature extraction genetic programming machine vision pattern recognition AOI
  • 相关文献

参考文献20

  • 1Gallegos-Hemandez A, Ruiz-Sanchez F J, Villalobos-Cano J R. 2D automated visual inspection system for the remote quality control of SMD assembly[C]. Sevilla, Spain: Proc of IEEE 28th Annual Confoflndustrial Electronics Society. Piscataway: IEEE Computer Society,2002:2219-2224.
  • 2Belbachir A N, Lera M, Fanni A, et al. An automatic optical inspection system for the diagnosis of printed circuits based on neural networks[C]. Hongkong: Conf Record of Industry Applications Conf and 40th IAS Annual Meeting. Piscataway: IEEE,2005:680-684.
  • 3Norris M J. Advances in automatic optical inspection: Gray scale correlation vs Vectoral imaging[C]. Proceedings of SMTA International in Rosemont. Edina: SMT Assoc, 2001 : 193-199.
  • 4Rovithakis G A, Maniadakis M, Zervakis M. Artificial neural networks for feature extraction and classification of vascular tissue fluorescence spectrums[C]. Istanbul, Turkey: Proc of IEEE Int Conf on Acoustics, Speech and Signal Processing. Piscataway: IEEE,2000:3454-3457.
  • 5Fitzgerald J A, Geiselbrechtinger F, Kechadi T. Feature extraction of handwritten symbols using fuzzy logic[C]. London, Ont, Canada:Proc of 17th Conf of Canadian Society for Computational Studies of Intelligence. Berlin: Springer-Verlag, 2004: 493-498.
  • 6Rizki M M, Zmuda M A, Tamburino L A. Evolving pattern recognition systems[J]. IEEE Trans on Evolutionary Computation, 2002, 6(6):594-609.
  • 7Raymer M L, Doom T E, Kuhn L A, et al. Knowledge discovery in medical and biological datasets using a hybrid Bayes classitier/evolutionary algorithm[J]. IEEE Trans on Systems, Man and Cybernetics, 2003, 33(5):802-813.
  • 8Jack L B, Nandi A K. Genetic algorithms for feature selection in machine condition monitoring with vibration signals [J]. IEEE Proceedings-Vision, Image and Signal Processing, 2000,147(6): 205-212.
  • 9Raymer M L, Punch W F, Goodman E D, et al. Dimensionality reduction using genetic algorithms[J]. IEEE Trans on Evolutionary Computation, 2000,4:164-17 I.
  • 10Rovithakis G A, Maniadakis M, Zervakis M. A hybrid neural network/genetic algorithm approach to optimizing feature extraction for signal classificattion[J]. IEEE Trans on Systems, Man and Cybemetics, Part B, 2004,34(1):695-703.

同被引文献15

  • 1Mukul, Shirvaikar. Trends in automated visual inspection [J]. Real-Time Image Proc,2006(1):41-43.
  • 2Khan Zulki.A primer on AOI and AOT[J].Circuits Assembly, 2006,17(9):38-41.
  • 3Jiang J R,Chen H S,Hung C W.Peer-to-peer AOI voice chatting for massively multiplayer online games[J].International Journal of Electrical Engineering,2010,17(1):43-54.
  • 4Khan,Zulki,Lerma Phil.Getting your multilayer board fabricated [J].Printed Circuit Design and Manufacture,2006,23(4):22-25.
  • 5Miller Don. Exploring AOI and X-ray [J]. Evaluation Engineering,2008,47(10):52-56.
  • 6Acciani G,Brunetti G,Fornarelli G,et al.AOI based neurofuzzy system to evaluate solder joint quality [C]. 11th International Conference on Enterprise Information Systems,2009:50-53.
  • 7Lu S L,Zhang X M,Kuang Y C.Optimized design of an AOI illuminator[C].IEEE Trans Wavelet Analysis and Pattern Recognition,2007:924-928.
  • 8Lu S L,Zhang X M,Kuang Y C.Optimal illuminator design for automatic optical inspection systems[J].International Journal of Computer Applications in Technology,2010,37(2): 101 - 108.
  • 9Chiu S N, Pemg M H.Reflection-area-based feature descriptor for solder joint inspection[J] .Machine Vision and Applications, 2007,18(2) :95-106.
  • 10Ong T Y, Samad Z, Ratnam M M. Solder joint inspection with multi-angle imaging and an artificial neural network[J].Int J Adv Manuf Technology Springer-Verlag London Limited, 2008,38 (5-6):455-462.

引证文献1

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部