摘要
研究了一类含时滞和扩散项的偏生态模型解的振动性,利用平均法,通过使用偏泛函微分方程上、下解思想和泛函微分方程振动性理论,获得了其解的正性和关于正平衡态振动的充分条件,为讨论时滞偏微分方程解的振动性提供了一种有效方法,推广了文[9,10]的结果.
In this paper, by using upper - and lower - solution method of partial functional differential equations and oscillation theory of functional differential equation, the oscillation of a population equation with diffusion and delay is studied and a sufficient condition for all positive solution of the equation to oscillate about the positive equilibrium is obtained. We give a effective method for the study of oscillation in partial differential equation with delay. Some known results are extended. Finally, a model arising from ecology is given to illustrate the obtained results.
出处
《安徽大学学报(自然科学版)》
CAS
北大核心
2007年第4期1-4,共4页
Journal of Anhui University(Natural Science Edition)
基金
国家自然科学基金资助项目(10371083)
重庆市教委优秀青年基金资助项目(D2005-37)
关键词
时滞
扩散
上、下解
偏生态模型
振动性
delay
diffusion
upper - and lower - solution
population equation
oscillation