期刊文献+

基于特殊差分方程的安全的多重秘密门限共享方案

Secure threshold multi-secret sharing scheme based on special difference equation
下载PDF
导出
摘要 介绍了多重秘密门限秘密共享方案,该方案通过一次秘密共享过程就可实现对任意个秘密的共享,而参与者秘密份额的长度仅为一个秘密的长度。同时,考虑了此类门限方案的安全性,基于特殊差分方程给出安全的多重门限秘密共享方案。分析表明,给出的门限秘密共享方案的信息率为1/2,且对于防欺诈是无条件安全的。 A multi-secret threshold secret sharing scheme was introduced. Through one process of secret sharing, any secret sharing could be achieved, and participants share a secret and the length is only a secret length. Meanwhile, considering such programs threshold of safety, a secure threshold multi-secret sharing scheme based on special difference equation was given. Analysis shows that the given threshold secret sharing scheme has the information rate of 1/2, and for fraud prevention is unconditionally safe.
出处 《计算机应用》 CSCD 北大核心 2007年第8期1913-1914,1918,共3页 journal of Computer Applications
基金 国家973计划资助项目(2004CB318000)
关键词 门限秘密共享 安全 差分 多重秘密 threshold secret sharing secure difference multi-secret
  • 相关文献

参考文献9

  • 1BLAKEY G R.Safeguarding cryptographic keys[C]// Proceedings of NCC.Montvale:AFIPS Press,1979,48:313-317.
  • 2SHAMIR A.How to share a secret[J].Communications of the ACM,1979,24(11):612-613.
  • 3HE J,DAWSON E.Multi stage secret sharing based on one way function[J].Electronics Letters,1994,30(19):1591-1592.
  • 4HE J,DAWSON E.Multi secret sharing scheme based on one way function[J].Electronics Letters,1995,31(2):93-95.
  • 5HAM L.Comment:multi stage secret sharing based on one-way function[J].Electronics Letters,1995,31(4):262-263.
  • 6HAM L.Efficient sharing (broadcasting) of multiple secrets[J].IEE Proceedings of Computers and Digital Techniques,1995,142(3):237-240.
  • 7CHIEN H Y,JAN J K,TSENG Y M.A practical (t,n) multi secret sharing scheme[J].IEICE Transactions on Fundamentals,2000,E83-A(12):2762-2765.
  • 8庞辽军,柳毅,王育民.一个有效的(t,n)门限多重秘密共享体制[J].电子学报,2006,34(4):587-589. 被引量:26
  • 9李滨.基于特殊访问权限的差分秘密共享方案[J].四川大学学报(自然科学版),2006,43(1):78-83. 被引量:20

二级参考文献10

  • 1karnin E D,Green J W,Hellman M E.On Sharing Secret Systems [J].IEEE Transactions on Information Theory,1983,29(1):35-41.
  • 2Rifa-Coma J.How to Avoid the Cheaters Succeeding in the Key Sharing Scheme.Designs [J].Codes and Cryptography,1993,3(3):221-228.
  • 3Benaloh J C.Secret Sharing Hornomorphisrns [J].Keeping Shares of a Secret,Advances in Cryptology-CRYPTO'86,1987:251 - 260.
  • 4Shamir A.How to Share a Secret[J].Communications of theACM,1979,22(11):612-613.
  • 5Blakley G R.Safeguarding Cryptographic Keys.In:Proceedings of the National Computer Conference [J].AFIPS,1979,48:313-317.
  • 6Stinson D R.Cryptography:Theory and Practice [M].Boca Raton:CRC Press,Inc,1995.
  • 7Ito M,Saito A.T.Nishizeki Secret Sharing Scheme Realizing General Access Structure [M].Proc.IEEE Global Telecommunication Conf.Globecom 87,1987,99 - 102.
  • 8Feldman P.A ractical Scheme for Non-interactive Verifiable Secret Sharing [J].In:Proc.28th IEEE Symposium on Foundations of Computer Sciences (FOCS'87).Los Angeles:IEEE Computer Society,1987,427- 437.
  • 9Pedersen T P.No-interactive and Information-theoretic Secure Verifiable Secret Sharing [J].In:Feigenbaum J,et al.Advances in Cryptology-Crypto'91 Proceedings,LNCS 576.Berlin:Springer-Verlag,1992,129-140.
  • 10谭凯军,诸鸿文,顾尚杰.(t,n)阈方案的欺诈识别[J].计算机研究与发展,1999,36(7):853-858. 被引量:13

共引文献42

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部