期刊文献+

基于反应谱法的多点激励下桥梁结构抗震可靠性分析 被引量:5

Seismic Reliability Analysis of Bridge Structures Subjected to Multi-Support Excitations by Response Spectrum Method
下载PDF
导出
摘要 基于随机振动理论,利用多点非一致地震力激励理论方法,分析了大跨度桥梁结构的抗震可靠度反应谱计算方法,并且给出结构峰值反应的均值、标准差计算公式,克服了既有设计方法不能给出标准差而无法直接进行可靠性分析的缺点,并利用简化后的复杂参数分析方法,在保证数据准确性的同时提高了计算效率。最后,以一刚构桥为例,对多点激励下桥梁结构抗震可靠度反应谱法加以计算,并与一致激励下的结果相比较,从而说明本文方法的可靠性。  The aseismic reliability analysis method of bridge structures by means of response spectrum method is presented based on stationary random vibration theory in this paper,and response variables of response mean and variance are gotten.This method overcomes the disadvantage of being incapable to obtain variable results so as to analyze impossibly the reliability of bridge structures under multi-support excitations.In addition,the simplified method of the correlation coefficients is also proposed which is more convenient to study the reliability of bridge structure.Finally,an example of a rigid bridge structure is showed and some meaning results are gotten,which are also compared between uniform and non-uniform seismic excitations.All analysis methods of above can be employed to study reliability of practical bridge structure subjected to multi-support seismic excitations.
出处 《防灾减灾工程学报》 CSCD 2007年第3期270-274,共5页 Journal of Disaster Prevention and Mitigation Engineering
基金 国家自然科学基金资助项目(50478094 50678033)
关键词 多点地震激励 桥梁结构 可靠度 反应谱法 multi-support seismic excitations bridge structure reliability response spectrum
  • 相关文献

参考文献5

  • 1Mounir K.Berrah,Eduardo Kausel.A modal combination rule for spatially varying seismic motions[J].Earthquake Engineering and Structural Dynamics,1993,(22):791-800
  • 2Berrah M,Kausel E.Modified response spectrum model for the design of structures subjected to spatially varying seismic excitations[R].Report R90-2,MIT Department of Civil Engineering,Cambridge,Massachusetts,1990
  • 3丁光莹,李杰.多点非一致激励长跨结构抗震可靠度分析[J].世界地震工程,2000,16(3):84-89. 被引量:10
  • 4刘先明,叶继红,李爱群.多点输入反应谱法的理论研究[J].土木工程学报,2005,38(3):17-22. 被引量:37
  • 5Ernesto H Z,Vanmarcke E H.Seismic random vibration analysis of multi-support structural systems[J].ASCE.Journal of Engineering Mechanics,1994,(120):1107-1128

二级参考文献11

  • 1[2]Berrah M K,Kausel E.A modal combination rule for spatially varying seismic motions[J].Earthquake Eng.Struct.Dyn.,1993,22(9):791-800.
  • 2[3]Berrah M K,Kausel E.Response spectrum analysis of structures subjected to spatially varying motions [J].Earthquake Eng.Struct.Dyn.1993,21(6):461-470
  • 3[4]Gupta A K.Response spectrum methods in seismic analysis and design of structures[M].Blackwell,Cambridge,M A,1990.
  • 4[5]Kiureghian A D,Neuenhofer A.Response spectrum method for multi-support seismic excitations [J].Earthquake Eng.Struct.Dyn.,1992,21:713-740.
  • 5[6]Heredia-Zavoni E,Vanmarcke E H.Seismic random-vibration analysis of multi-support structure systems [J].Journal of the Engineering Mechanics,1994,12(5):1107-1128.
  • 6[7]Yamamura N,Tanaka H.Response analysis of flexible MDF system for multiple-support seismic excitations [J].Earthquake Eng.struct.Dyn.,1992,19:345-357.
  • 7Kiureghian A D, Neuenhofer A. Response spectrum method for multi-support seismic excitations [J]. Earthquake Engineering & Structural Dynamics, 1992, 21 (8) : 713-740.
  • 8Berrah M, Kausel E. Response spectrum analysis of structures subjected to spatially varying motions [J]. Earthquake Engineering & Structural Dynamics, 1992, 21 : 461 - 470.
  • 9Berrah M, Kausel E. A model combination rule for spatially varying seismic motions [J]. Earthquake Engineering & Structural Dynamics, 1993, 22:791-800.
  • 10朱莅秋.随机振动[M].北京:科学出版社,1998..

共引文献44

同被引文献41

引证文献5

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部