期刊文献+

基于免疫原理和Boosting机制的模糊分类规则挖掘算法 被引量:2

Algorithm for Mining Fuzzy Classification Rules Based on Immune Principles and Boosting Mechanism
下载PDF
导出
摘要 基于免疫原理和Boosting机制,提出了一种模糊分类规则挖掘算法.该算法主要借鉴于自然免疫系统中的克隆选择原理,通过抗体种群的演化来优化模糊规则.模糊规则库通过增量的方式产生,算法每次运行得到一个规则.Boosting机制用于调整训练数据的权值,使得新生成规则集中于当前未被覆盖或误分类的数据实例.仿真实验表明,所提算法可根据规则的分类精度来调整训练数据的权值,促进了模糊规则之间的协作关系,避免了规则之间相互冲突,提高了系统的分类精度. An algorithm is proposed for mining fuzzy classification rules by using natural immune principles and boosting mechanism. The proposed algorithm is mainly inspired by the clonal selection principle of biological immune systems, and the population of antibodies is evolved to optimize fuzzy classification rules. The fuzzy classification rule base is generated in an incremental way, in which one rule is obtained in each run of the proposed algorithm. When one rule is generated, boosting mechanism is used to change the weights of the training instances so as to mine new rules that are focused on currently uncovered or misclassified instances. The proposed algorithm can promote the cooperation and avoid the conflict among fuzzy rules by using boosting mechanism. Compared to other relevant algorithms the proposed algorithm has better predictive accuracy.
作者 张雷 李人厚
出处 《西安交通大学学报》 EI CAS CSCD 北大核心 2007年第8期927-930,953,共5页 Journal of Xi'an Jiaotong University
关键词 免疫原理 模糊规则 分类规则 挖掘算法 immune principle fuzzy rule classification rule mining algorithm
  • 相关文献

参考文献8

  • 1Chang Xiaoguang,Lilly J H.Evolutionary design of a fuzzy classifier from data[J].IEEE Transactions on Systems,Man,and Cybernetics,2004,34 (4):1894-1906.
  • 2Roubos H,Setnes M.Compact and transparent fuzzy models and classifiers through iterative complexity reduction[J].IEEE Transaction on Fuzzy Systems,2001,9(4):516-524.
  • 3Castro L N,Timmis J.Artificial immune systems:a new computation intelligence approach[M].Berlin:Springer-Verlag,2002.
  • 4Watkins A B,Boggess L C.A resource limited artificial immune classifier[C]//Proceedings of Congress on Evolutionary Computation.Piscataway,USA:IEEE,926-931.
  • 5Alves R T,Degado M R,Lopes H S,et al.An artificial immune system for fuzzy-rule induction in data mining[M]//Lecture Notes in Computer Science:Parallel Problem Solving from Nature.Berlin:SpringerVerlag,2004:1011-1020.
  • 6Castro L N,von Zuben F J.Learning and optimization using the clonal selection principle[J].IEEE Transaction on Evolutionary Computation,2002,6 (3):239-251.
  • 7Freund Y,Schapire R E.Experiments with a newboosting algorithm[C]//Proceedings of the 13th In-ternational Corference on Machine Learning.SanFrancisco:Morgan Kaufmann Publishers,1996:148-156.
  • 8Blake C,Merz C.UCI repository of machine leamingdatabases (1998)[DB/OL].[2006-01-12].http://www.ics.uci.edu/mlearn/MLRepository.html.

同被引文献17

  • 1杨立,左春,王裕国.基于语义距离的K-最近邻分类方法[J].软件学报,2005,16(12):2054-2062. 被引量:31
  • 2张海龙,王莲芝.自动文本分类特征选择方法研究[J].计算机工程与设计,2006,27(20):3840-3841. 被引量:45
  • 3孙晋文,肖建国.基于SVM文本分类中的关键词学习研究[J].计算机科学,2006,33(11):182-184. 被引量:12
  • 4罗海飞,吴刚,杨金生.基于贝叶斯的文本分类方法[J].计算机工程与设计,2006,27(24):4746-4748. 被引量:14
  • 5巩军,刘鲁.一种k-NN文本分类器的改进方法[J].情报学报,2007,26(1):56-59. 被引量:10
  • 6HAN E H, KARYPIS G, KUMAR V. Text categorization using weight adjusted k-nearest neighbor clas sification[C]// Proceedings of the 5th Pacific Asia Conference on Knowledge Discovery and Data Mining. Berlin, Germany: Springer-Verlag, 2001..53-65.
  • 7YAMADA T, YAMASHITA K, ISHII N, et al. Text classification by combining different distance functions with weights[C]// Proceedings of the 7th ACIS International Conference on Software Engineering, Artificial Intelligence, Networking, and Parallel/ Distributed Computing. Los Alamitos, CA, USA: IEEE Computer Society, 2006: 85-90.
  • 8JAGADISH H V, OOI B C, TAN K L, et al. iDistance: an adaptive B-tree based indexing method for nearest neighbor search[J]. ACM Transactions on Da tabase Systems, 2005, 30(2):364-397.
  • 9FREUND Y, SCHAPIRE R E, A decision theoretic generalization of on-line learning and an application to boosting [J]. Journal of Computer and System Sciences, 1997, 55(1)7119-139.
  • 10FERN X Z, BRODLEY C E, Boosting lazy decision trees [C]//20th International Conference on Machine Learning. Menlo Park, CA, USA: American Association for Artificial Intelligence, 2003: 178-185.

引证文献2

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部