期刊文献+

具有完美匹配的单圈图的代数连通度 被引量:1

On Algebraic Connectivity of Unicyclicgraph with Perfect Matching
下载PDF
导出
摘要 证明n(n≥22)阶具有完美匹配的单圈图的代数连通度不超过(3-5^(1/2))/2,我们同时确定了代数连通度达到(3-5^(1/2))/2的所有n(n≥22)阶具有完美匹配的单圈图。 It was proved thatthe algebraic connectivity of any unicyclic graph of order n (n ≥22) with perfect matching does not exceed (3-√5)/2 All the unieyelie graphs of order n ( n ≥22) with perfect matching whose algebraic connectivity attains (3-√5)/2were also determind.
出处 《上海工程技术大学学报》 CAS 2007年第2期157-161,共5页 Journal of Shanghai University of Engineering Science
关键词 单圈图 完美匹配 LAPLACE矩阵 代数连通度 unicyclic graph perfect matehing laplace matrix algebraic connectivity
  • 引文网络
  • 相关文献

参考文献9

  • 1Barik S,Pati S.On algebraic connectivity and spectral integral variations of graphs[J].Linear Algebra Appl,2005,397:209-222.
  • 2Grone R,Merris R,Sunder V S.The laplacian spectrum of a graph[J].SIAM J Matrix Anal Appl,1990,11(2):218-238.
  • 3Cvetkovic' D M,Doob M,Sachs H.Spectra of graphs-theory and applications[M].Berlin New York:VEB Deutscher Verlag d.Wiss.Academic Press,1979.
  • 4Fiedler M.Algebraic connectivity of graphs[J].Czech Math J,1973,98(23):298-305.
  • 5Horn R A,Johnson C R.Matrix Analysis[M].New York:Cambridge University Press,1985.
  • 6Molitiernoa J J,Neumann M.On trees with perfect matchings[J].Linear Algebra Appl,2003,362:75-85.
  • 7Zhang X D.On the two conjectures of Graffiti[J].Linear Algebra Appl,2004,385:369-379.
  • 8Grone R,Merris R.Ordering trees by algebraic connectivity[J].Graphs Combin,1990(6):229-237.
  • 9肖恩利,束金龙,闻人凯.单圈图的Laplacian谱(英文)[J].华东师范大学学报(自然科学版),2003(2):16-21. 被引量:3

二级参考文献5

  • 1Merris R. Laplacian matrices of graphs: A survey[J]. Linear Algebra Appl, 1994, 197-198: 143-176.
  • 2Grone R, merris R, Sunder V S. The Laplacian spectrum of a grph[J]. SIAMJ Matrix Anal Appl, 1990, 11(2):218-238.
  • 3Mohar B. The Laplacian spectrum of graphs[A]. Y Alavi. Graph Theory, Combinatorics and Applications[ C ].New York: J Wiley. 1991. 871-898.
  • 4Fiedler M. Algebraic connectivity of graphs[J]. Czech Math J, 1973, 23. 298-305.
  • 5Biggs N. Algebraic Graph Theory[M]. Cambridge: Cambrideg University Press, 1993.

共引文献2

同被引文献5

  • 1朱铭扬.三参数威布尔分布的参数估计[J].江苏技术师范学院学报,2006,12(6):31-34. 被引量:6
  • 2恽为民,席裕庚.遗传算法的全局收敛性和计算效率分析[J].控制理论与应用,1996,13(4):455-460. 被引量:113
  • 3全国研究生数学建模竞赛组委会.2009年全国研究生数学建模竞赛试题[EB/OL].(2009-09-18)[2009-09-23].http:∥www.shumo.com/2009.html.
  • 4HOLLAND J H.Adaptation in Natural and Artificial Systems:An Introductory Analysis with Apphcations to Biology,Control,and Artificial Intelligence[M].Cambridge:The MIT Press,1992.
  • 5严尉敏,吴伟民.数据结构:C语言版[M].北京:清华大学出版社,1997:186-192.

引证文献1

;
使用帮助 返回顶部