摘要
文中讨论了下面修正Mann’s迭代格式{xn},x0∈K,xn+1=(1-αn)yn+αnf(xn)yn=(1-βn)Txn+βnxnn≥0的迭代序列的收敛性问题,在适当的假设条件之下在Banach空间中证明了迭代序列{xn}强收敛到非扩张映射的某个不动点x,且x是某个变分不等式在不动点集F(T)上的唯一解.结果改进和推广了Xu Hong-kun[1]、Kim Tae-hwa和Xu Hong-kun[2]等的相应结果.
In this paper the convergence to the following modified Mann's iterative sequence { xn } is studied, for x0∈K,{xn+1=(1-αn)yn+αnf(xn) yn=(1-βn)Txn+βnxn n≥0 where αn ,βn ∈ (0,1) satisfy proper conditions. We proved { xn } strongly converges to some fixed point x of T, and is unique solution to some variational inequality in F(T), Our results extended and improved the corresponding ones by Xu Hong-kun and Kim Tae-hwa and Xu Hong-kun.
出处
《天津理工大学学报》
2007年第4期1-5,共5页
Journal of Tianjin University of Technology
基金
国家自然科学基金(1047103310271011)