期刊文献+

非扩张映射的粘性迭代逼近

Viscosity iterative approximation for nonexpansive mappings
下载PDF
导出
摘要 文中讨论了下面修正Mann’s迭代格式{xn},x0∈K,xn+1=(1-αn)yn+αnf(xn)yn=(1-βn)Txn+βnxnn≥0的迭代序列的收敛性问题,在适当的假设条件之下在Banach空间中证明了迭代序列{xn}强收敛到非扩张映射的某个不动点x,且x是某个变分不等式在不动点集F(T)上的唯一解.结果改进和推广了Xu Hong-kun[1]、Kim Tae-hwa和Xu Hong-kun[2]等的相应结果. In this paper the convergence to the following modified Mann's iterative sequence { xn } is studied, for x0∈K,{xn+1=(1-αn)yn+αnf(xn) yn=(1-βn)Txn+βnxn n≥0 where αn ,βn ∈ (0,1) satisfy proper conditions. We proved { xn } strongly converges to some fixed point x of T, and is unique solution to some variational inequality in F(T), Our results extended and improved the corresponding ones by Xu Hong-kun and Kim Tae-hwa and Xu Hong-kun.
出处 《天津理工大学学报》 2007年第4期1-5,共5页 Journal of Tianjin University of Technology
基金 国家自然科学基金(1047103310271011)
关键词 一致光滑BANACH空间 非扩张 修正Mann迭代 弱序列连续的正规对偶映射 uniformly smooth Banach spaces nonexpansive modified Mann iterations weakly sequentially continuous duality mappings
  • 相关文献

参考文献12

  • 1[1]Xu Hong-kun.Viscosity approximation methods for nonexpansive mappings[J].J Math Anal Appl,2004,298:279-291.
  • 2[2]Kim Tae-hwa,Xu Hong-kun.Strong convergence of modified Mann iterations[J].Nonlinear Anal,2005,67:51-60.
  • 3[3]Riech.Weak convergence theorems for nonexpansive mappings in Banach spaces[J].J Math Anal Appl,1979,67:274-276.
  • 4[4]Riech S.Strong convergence theorems for resolvents of accretive operators in Banach spaces[J].J Math Anal Appl,1980,75:287-292.
  • 5[5]Shioji N,Takahashi W.Strong convergence of approximated sequences for nonexpansive mappings in Banach spaces[J].Proc Amer Math Soc,1997,125:3641-3645.
  • 6[6]Xu H K.Iterative algorithms for nonlinear operators[J].J London Math Soc,2002,66:240-256.
  • 7[7]Xu H K.An iterative approach to quadratic optimization[J].J Option Theory Appl,2003,116:659-678.
  • 8[8]Jung Jong-soo.Iterative approaches to common fixed points of nonexpansive mappings in Banach spaces[J].J Math Anal Appl,2005,302:509-520.
  • 9[9]Nakajo K,Takahashi W.Strong convergence theorems for nonexpansive mappings and nonexpansive semigroups[J].T Math Anal Appl,2003,279:372-379.
  • 10[10]Kamimura S,Takahashi W.Weak and Strong convergence of solutions to accretive operator inclusions and applications[J].Set-Valned Anal,2000(8):361-374.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部