期刊文献+

基于FGN和FLN的网络通信量模型FGLN

Network Teletraffic Model FGLN Based on FGN and FLN
下载PDF
导出
摘要 为了捕获大规模网络通信量的动力学行为特征,该文提出了一种基于分数高斯噪声和分数利维噪声的网络通信量新模型,给出了该模型参数的估计方法和通信量生成算法。仿真实验和对比分析表明,与其它经典通信量模型相比,新模型具有更好的性能,能够较好地捕获实际网络通信量的动力学行为特征,包括自相似性和冲激性。 To obtain the kinetic behavior characteristic of large-scale network teletraffic, this paper proposes a network teletraffic model based on fractional Gaussian noise (FGN) and fractional Levy noise (FLN), and the corresponding algorithms of estimating the parameter and generating the teletraffic. Extensive simulation demonstrates that the model proposed better than other classical teletraffic models, and it can accurately obtain the kinetic behavior characteristic of real-world teletraffic, including self-similarity and impulsion.
出处 《计算机工程》 CAS CSCD 北大核心 2007年第13期43-45,共3页 Computer Engineering
基金 湖南省自然科学基金资助项目(05JJ40131) 湖南省教育厅科研基金资助项目(05c409) 湖南师范大学青年基金资助项目(22040637)
关键词 Joseph效应 Noah效应 分数高斯噪声 分数利维噪声 通信量模型 Joseph effect Noah effect fractional Gaussian noise(FGN) fractional Levy noise(FLN) teletraffic model
  • 相关文献

参考文献5

  • 1Paxson V,Floyd S.Wide-area Traffic:The Failure of Poisson Modeling[J].IEEE/ACM Transactions on Networking,1995,3(3):226.
  • 2Laskin N,Lambadaris I,Harmantzis F C.Fractional Levy Motion and Its Application to Network Traffic Modeling[J].Computer Networks,2002,40(3):363-375.
  • 3张连明,陈志刚,刘安丰.一种基于FGN和IDFT的自相似通信量生成算法[J].通信学报,2004,25(11):16-25. 被引量:4
  • 4Wei B W,George M,Zhang Danlu.Simulating Sample Paths of Linear Fractional Stable Motion[J].IEEE Transactions on Information Theory,2004,50(6):1086-1096.
  • 5The Internet Traffic Archive[Z].2000.http://ita.ee.lbl.gov/ index.html.

二级参考文献14

  • 1GUO L, CROVELLA M, MATTA I. TCP Congestion Control and Heavy Tails[R]. Tech Rep BUCS -TR -2000-017,Computer Science Dep,Boston University,2000.
  • 2GARRETT M, WILLINGER W. Analysis, modeling, and generation of self-similar VBR video traffic[A]. Proceedings of ACM Sigcomm Conference[C]. London, UK, 1994.268-280.
  • 3RAMBALDI S, PINAZZA O. An accurate fractional Brownian motion generator[J]. Physica A, 1994, 202(1):21-30.
  • 4LAU W C, ERRAMILLI A, WANG J. Self-similar traffic generation:the random midpoint displacement algorithrn and its properties[A].Proceedings of ICC'95[C]. 1995. 466-472.
  • 5FLANDRIN P. Wavelet analysis and synthesis of fractional brownian motion[J]. IEEE Transactions on Information Theory, 1992,38(2):910-917.
  • 6BERAN J. Estimation, Testing and Predication for Self-Similar and Related Processes[D]. ETH, Zurich, 1986.
  • 7PAXSON V. Fast, approximate synthesis of fractional Gaussian noise for generating self-similar network traffic[J]. Computer Communications Review, 1997, 27(5):5-18.
  • 8LELAND W E, TAQQU M, WILLINGER W. On the self-similar nature of Ethernet traffic (extended version)[J].IEEE/ACM Transactions on Networking, 1994, 2(1):1-15.
  • 9PAXSON V, FLOYD S. Wide area traffic: the failure of poisson modeling[J]. IEEE/ACM Transactions on Networking, 1995, 3(3):226-244.
  • 10CROVELLA M E, BESTAVROS A. Self-similarity in world-wide web traffic: evidence and possible causes[J]. IEEE/ACM Transactions on Networking, 1997,5(6): 835-846.

共引文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部