摘要
在模式识别领域中,音乐检索算法由于其易行和高效的特性而得到越来越多的重视。但是音符分割不精确和匹配模版不统一等问题直接影响MIR算法精确度。为解决上述问题,提出基于动态阈值分割和加权综合匹配算法。动态设定幅差步长,根据变化阈值分割音符,以提高音符分割的准确性。采用标准乐谱频率,转换音高模板实现输入归一化,以增强匹配的精确性。融合直接匹配和DTW匹配,以加强算法适应性和鲁棒性。最后由实验证明该方法的有效性。
In the pattern recognition field, music information retrieval (MIR) is receiving more and more attention. To improve the accuracy of MIR system, a novel automatic algorithm based on dynamic thresholds note segmentation and weighted synthesis match is presented. Dynamic steps are set for amplitude difference, get dynamic thresholds to segment notes and improve segmentation veracity. Music scores are transformed into fiequency templates by standard frequency and the input signal pitch is normalized to enhance the accuracy. To improve the adaptability and the robustness, traditional approximate string match algorithm and DTW algorithm are synthesized. The simulation results are provided to show the validity of the algorithm.
出处
《计算机工程》
CAS
CSCD
北大核心
2007年第13期194-196,199,共4页
Computer Engineering
基金
北京师范大学"985"工程资助项目"北京师范大学数字博物馆"
国家自然科学基金资助项目(60673100/F020106)
中国博士后基金资助项目(20060400407)
北京师范大学青年基金资助项目
关键词
音乐检索算法
动态域分割
综合加权匹配
钢琴音频模版
music information retrieval (MIR)
dynamic thresholds segmentation
weighted synthesis match
piano frequency template