期刊文献+

铝合金光电光谱分析的径向基神经网络方法 被引量:3

RBF method of photoelectric spectral analysis of aluminium alloy
原文传递
导出
摘要 在铝合金光电光谱分析的定量分析阶段,确定光谱强度与元素含量的对应关系,将直接影响定量分析的质量。根据标准铝合金成份的确定性,将单一径向基神经网络,改为由每一元素对应一子径向基神经网络,再将这些子径向基神经网络组合成一完整神经网络,以完成铝合金的定量分析,并利用Matlab中的径向基网络,构建函数newrb()返回误差,使每个径向基网络的均方误差减到最小。在Matlab中,模拟实验证明用该方法训练的组合径向基网络所得均方误差,是单一径向基网络均方误差的1/20。 At the photoelectric quantitative analysis stage for spectral analysis of aluminium alloy, the certain intensity of spectrum and corresponding relation of the content of element will influence quantitative analysis quality directly. According to standard aluminium alloy determinacy of composition, creating a sub radial basis function(RBF) neural network by every element in aluminium alloy to replace single RBF neural network, make these sub RBF neural network up one intact neural network finishing the quantitative analysis of the aluminium alloy,then utilize characteristic unexposed of RBF network struction function newrb ( )of Matlab, make square error minimum for every radial base network. The simulation experiment proves the association RBF neural network,training with this method,it's the square error is 20 times less than the single radial base network in Matlab.
出处 《计算机与应用化学》 CAS CSCD 北大核心 2007年第8期1107-1109,共3页 Computers and Applied Chemistry
关键词 铝合金 光电光谱分析 径向基神经网络 组合径向基 aluminium alloy, photoelectric spectral analysis, RBF neural network, associated RBF
  • 相关文献

参考文献5

二级参考文献32

  • 1韩志刚.无模型控制方法在化肥生产中的应用[J].控制理论与应用,2004,21(6):858-863. 被引量:18
  • 2尹申明,陆建东,雷鸣,杨叔子.自适应神经网络学习方法研究[J].计算机研究与发展,1994,31(6):24-29. 被引量:14
  • 3屈凌波,相秉仁,安登魁.人工神经网络技术及其在药物复方制剂和中药分析中的应用[J].药物分析杂志,1996,16(3):201-203. 被引量:13
  • 4Berthold M R, Diamond J. Boosting the Performance of RBF Networks with Dynamic Decay Adjustment. In: Advances in Neural Information Processings 7, 1995
  • 5Ales Leonardis, Horst Bischof. An efficient MDL-Based construction of RBF networks. Neural Networks, 1998, 11(5):963~973
  • 6Yao Y Y, Wong S K M, Butz C J. On information-theoretic measures of attribute importance. In: Zhong N, Zhou L, eds. Proceedings of the 3rd Pacific-Asia Conference on Knowledge Discovery and Data Mining (PAKDD'99), Beijing, China, 1999. 133~137
  • 7Lang K, Witbrock M. Learning to tell two spirals apart. In: Proceedings of
  • 8Whitehead B A. Cooperative-competitive genetic evolution of radial basis function centers and widths fortime series prediction.IEEE Transactions on Neural Networks, 1996, 7(4): 869~880
  • 9L u Y W, Sundararajan N, Saratchandran P. Performance evaluation of sequential mininal radial basis function (RBF) neural network learning algorithm. IEEE Transactions on Neural Networks, 1998, 9(6): 308~317
  • 10Bianchini M, Frasconi P, Gori M. Learning without local minima in radial basis function networks. IEEE Transactions on Neural Networks, 1995, 6(3):749~756

共引文献66

同被引文献74

引证文献3

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部