期刊文献+

室内人体移动过程对热舒适的影响研究 被引量:5

Study of the Impact of Human Motion on Indoor Thermal Comfort
下载PDF
导出
摘要 使用计算流体力学(CFD)技术,结合动网格技术和刚体运动学理论,对室内人体移动进行了动态模拟,得到了人体移动过程中不同时刻室内流场分布.分析了移动过程中的平均温度、平均速度、温度和速度不均匀性指标,并预测了有效吹风温度(TEDT)、空气分布特性指标(ADPI)和吹风感的不满意率指标(PD),比较了不同人体移动速度对以上指标的影响.模拟结果表明,人体移动对室内气流分布和热舒适有短期影响,能提高室内风速的扰动,造成吹风感. Simulation of human motion indoors was carried out by using the computational fluid dynamic (CFD) technique with the integration of the dynamic mesh model and the rigid kinematics. The velocity distributions were obtained during the moving process. Meanwhile, the different parameters were compared, including the average temperature, average velocity, kT and kg, the effective draft temperature (TEDT), air distribution performance index (ADPI) and percentage of dissatisfied index (PD) with the consideration of the impact of human motion. The results have shown that human motion has a significant impact on indoor airflow distribution and thermal comfort in a short period of time. This study is helpful to the further investigation of the impact of human motion on indoor environment.
出处 《湖南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2007年第8期1-5,共5页 Journal of Hunan University:Natural Sciences
基金 '十一五'国家科技支撑计划资助项目(2006BAJ02A08 2006BAJ02A05) 教育部留学回国基金资助项目(教外司[2006]331) 湖南省建设厅资助项目(湘建科[2006]23)
关键词 空气质量 动网格模型 气流分布 热舒适 热环境 airquality dynamic mesh model airflow distribution thermal comfort thermal environment
  • 相关文献

参考文献8

  • 1ASHRAE. Thermal environmental conditions for human occupancy[M]. Atlanta: ASHRAE, 1992,55-92.
  • 2ISO 7730. Moderate thermal environment-determination of the PMV and PPD indices and specification of the conditions of thermal comfort [ S ]. Geneva: International Standard Organization, 1994.
  • 3BJORN E, NIELSEN P V. Dispersal of exhaled air and personal exposure in displacement ventilated rooms [J]. Indoor Air, 2002, 12: 147-164.
  • 4MATTSSON M. On the efficiency of displacement ventilation, with particular reference to the influence of human physical activity [D]. Sweden: Centre for Building and Environment Royal Institute of Technology, 1999.
  • 5ASHRAE. ASHRAE Handbook-Fundamentals[M]. Atlanta: ASHRAE, 1997.
  • 6ZHENGEN R, JOHN S. Prediction of personal exposure to con- taminant sources in industrial buildings using a sub-zonal model [J]. Environmental Modelling & Software, 2005, 20:623 - 638.
  • 7ZHUA S W, KATO S K. Study on inhalation region by means of CFD analysis and experiment [J]. Building and Environment, 2005, 40: 1329-1336.
  • 8纪秀玲,李国忠,戴自祝.室内热环境舒适性的影响因素及预测评价研究进展[J].卫生研究,2003,32(3):295-299. 被引量:53

二级参考文献18

  • 1舒适 李天麟 等编译.Fanger PO[M].北京:北京科学技术出版社,1992.16.
  • 2McIntyre D. Preferred air speed for comfort in warm conditions.ASHRAE Transactions, 1978,84(2):264--277.
  • 3Mclntyre D. The effect of air movement on thermal comfort and sensation.Indoor Climate, 1979,541--560.
  • 4Tanabe Shin-ichi, Kimura Ken-ichi. Effects of air temperature, humidity and air movement on thermal comfort under hot and humid conditions.ASHRAE Trans : Symposia, 1994,30.
  • 5Nevins R. Effect of change in ambient temperature and level of humidity on comfort and thermal sensation. ASHRAE Transact, 1975.81 ( 1 ) :64--77.
  • 6Toftum J, Jorgensen AS, Fanger PO. Upper limits of air humidity for preventing warm respiratory discomfort. Energy Build, 1998, (28) : 15--23.
  • 7Berglund LG. Perceived air quality and the thermal environment. IAQ,1989 : 93--99.
  • 8Daniel WT Chan. An assessment of thermal comfort in office premises in Hong Kong. ASHRAE trans, 1998, 104( 1 ) :80.
  • 9Richard J, de Dear. Gall SB. Developing an Adaptive Model of Thermal Comfort and Preference. ASHRAE Trans, 1998,104(1) :98.
  • 10Fanger PO. Prediction of thermal sensation in non-air-conditioned buildings in warm climates. Indoor Air,2002.15:48.

共引文献52

同被引文献72

引证文献5

二级引证文献21

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部