期刊文献+

以砂纸为模板制作聚合物超疏水表面 被引量:28

Replication of Superhydrophobic Surfaces of Polymer from Abrasive Papers
下载PDF
导出
摘要 报道了一种聚合物材料超疏水表面的简便制备方法.以不同型号的金相砂纸为模板,通过浇注成型或热压成型技术,在聚合物表面形成不同粗糙度的结构.接触角实验结果证明,聚合物表面与水的接触角随着所用砂纸模板粗糙度的增加而加大,其中粒度号为W7和W5砂纸制作的表面与水的接触角可超过150°,显示出超疏水性质.多种聚合物使用砂纸为模均可制备不同粗糙度及超疏水的表面,本征接触角对复制表面浸润性的影响从Wenzel态到Cassie态而变小.扫描电镜结果表明,不规则形状的砂纸磨料颗粒构成了超疏水所需要的微纳米结构的模板. Abrasive papers are well-known tool for polishing solid surface with different roughnesses. Here we present a facile method for making superhydrophobic surface using the metallographic abrasive papers as the mold. The rough surfaces of polymers including polydimethylsiloxane, polyethylene, polypropylene, and polystyrene were prepared with casting or hot embossing on the abrasive paper molds. SEM results reveal that the roughness of the polymer surface could be controlled by selecting the mold. Contact angle measurement shows that the water contact angle(WCA) on the as-prepared surfaces increased with the increase of roughness of the abrasive papers used, especially, the WCA on the surfaces prepared with types of W7, W5 abrasive papers can reach more than 150°, alias superhydrophobic surface. The replicas show that the changing from Wenzel state to Cassie state indicated the roughness changing. And the difference of WCA on rough surface between polymers with different intrinsic contact angles is decreased while Wenzel state changes to Cassie state.
出处 《高等学校化学学报》 SCIE EI CAS CSCD 北大核心 2007年第8期1577-1580,共4页 Chemical Journal of Chinese Universities
基金 教育部留学回国人员科研启动基金 中国科学院有机固体重点实验室开放基金资助
关键词 超疏水表面 砂纸 聚合物 接触角 Superhydrohobic surface Abrasive paper Polymer Contact angle
  • 相关文献

参考文献17

  • 1Feng X. J. , Jiang L.. Adv. Mater. [J], 2006, 15:3063-3078
  • 2Guo C. W. , Feng L. , Zhai J. , et al.. Chem. Phys. Chem. [J] , 2004, 5: 750-753
  • 3Sun M. H. , Luo C. X. , Xu L. P. , et al.. Lanmmuir[J] , 2005, 21:8978-8981
  • 4金美花,冯琳,封心建,翟锦,江雷,白玉白,李铁津.阵列聚合物纳米柱膜的超疏水性研究[J].高等学校化学学报,2004,25(7):1375-1377. 被引量:29
  • 5Lee S. M. , Kwon T. H.. Nanotechnology[J], 2006, 17:3189-3196
  • 6Erbril H. Y. , Dew.ire A. L. , Avci Y. , et al.. Science[J], 2003, 299:1377-1380
  • 7Shirtcliffe N. J. , McHale G. , Newton M. I. , et al.. Langmuir[J], 2003, 19:5626-5631
  • 8Xie Q. D. , Fan G. Q., Zhao N. , et al.. Adva. Mater. [J], 2004, 16:1830-1833
  • 9Oener D. , McCarthy T. J.. Langmuir[J], 2000, 16:7777-7782
  • 10Bico J. , Marzolin C. , Quere D.. Europhys. Lett. [J], 1999, 47:220-226

二级参考文献32

  • 1Wang X B,Appl Phys A,2000年,71卷,347页
  • 2Tsui F,Appl Phys Lett,2000年,76卷,1452页
  • 3Lin M F,Phys Rev.B,2000年,61卷,14114页
  • 4Pan Z W,Appl Phys Lett,1999年,74卷,3152页
  • 5Huang S M,J Phys Chem B,1999年,103卷,4223页
  • 6Chen W,Langmuir,1999年,15卷,3395页
  • 7Fan S S,Science,1999年,283卷,512页
  • 8Che G L,Nature,1998年,393卷,346页
  • 9Nishino T., Meguro M., Nakamae K. et al.. Langmuir[J], 1999, 15: 4 321-4 323
  • 10Youngblood J. P., McCarthy T. J.. Macromolecules[J], 1999, 32: 6 800-6806

共引文献53

同被引文献402

引证文献28

二级引证文献246

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部