期刊文献+

LDPC码的树图法构造 被引量:2

Construction of LDPC Codes With Tree Graph
下载PDF
导出
摘要 LDPC码译码采用的是BP算法,但由于回路的存在,使译码重复迭代,特别是短长度的回路使LDPC码的性能下降。为此,用树图法分析了LDPC码的回路及其特性,给出了求解回路长度和所经过节点的方法,非常适合于计算机进行求解。同时也用树图的方法来构造LDPC码,可以在树生成的过程中了解其中的回路数目及长度。 Belief- Propagation(BP) algorithm is used in LDPC code's decoding, but small loops degrade the code's performance. This paper analyzes the LDPC code's Loops by tree graph and also presents a method to obtain the loop lenghth and the nodes passing by. This nethod is easy to be realized by computer. At the same time, LDPC code can also be constructed with tree graph and the number of loop and the lenghth can be known during the generation of tree.
出处 《电讯技术》 2007年第4期166-168,共3页 Telecommunication Engineering
关键词 LDPC码 TANNER图 树图法 回路 LDPC code Tanner graph tree graph method loop degree
  • 相关文献

参考文献7

  • 1Gallager R G.Low Density Parity Check Codes[M].MA:MIT Press,1963.
  • 2MacKay D J C.Good error-correcting codes based on very sparse matrices[J].IEEE Transactions on Information Theory,1999,45(2):399-431.
  • 3McGowan J A,Williamson R C.Loop removal from LDPC codes[C]//Proceedings Information Theory Workshop.IEEE,2003:230-233.
  • 4Luby M G,Amin Shokrolloahi M,Mizenmacher M,et al.Improved low-density parity-check codes using irregular graphs and belief propagation[C]// Proceedings of 1998 IEEE International Symposium on Information Theory.IEEE,1998:117.
  • 5Diestel Reinhard.Graph Theory[M].Springer-Verlag New York Inc,1997.
  • 6MacKay D J C,Neal R M.Near Shannon limit performance of low density parity check codes[J].Electronics Letters,1997,33(6):457-458.
  • 7Richardson T J,Shokrollahi M A,Urbanke,R L.Design of capacity-approaching irregular low-density parity-check codes[J].IEEE Transactions on Information Theory,2001,47(2):619-637.

同被引文献21

  • 1Gallager R G.Low-Density Parity-Check Codes[D].Cambridge,MA:M.I.T.Press,1963.
  • 2MacKay D J C,Neal R M.Near Shannon Limit Performance of Low Density Parity Check Codes[J].Electronics Letters,1996 (8):1645-1646.
  • 3Tanner R M.A Recursive Approach to Low Complexity Codes[J].IEEE Transactions On Information.Theory,1981 (9):533-547.
  • 4Xiao Yu Hu,Elefthefiou E,Arnold D M.Regular and Irregular Progressive Edge-Growth Tanner Graphs[J].IEEE Trans.Info.Theory,2005 (1):386-398.
  • 5Mackay D J C.Good Error-Correcting Codes Based on Very Sparse Matrices[J].IEEE Trans.Info.Theory,Vol.IT-45,1999 (3):399-431.
  • 6Fossorier M.Quasicyclic Low Density Parity Check Codes[J].IEEE Trans.Inform.Theory,2005 (8):1788-1793.
  • 7Richardson T,Urbanke R.Efficient Encoding of Low-Density ParityCheck Codes[J].IEEE Trans.Info.Theory,2001 (2):638-656.
  • 8M Fossorier.Quasicyclic low density parity checkcodes[].IEEE Transactions on Information Theory.2005
  • 9Gallager RG.Low-Density Parity-Check Codes[]..1963
  • 10Mackay DJC,Neal RM.Near Shannon limit performance of low density parity check codes[].Electronics Letters.1996

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部