期刊文献+

基于新型空穴传输材料的有机电致发光器件的研究 被引量:8

Organic Light-Emitting Devices Based on Novel Hole Transport Layer
原文传递
导出
摘要 利用真空蒸镀方法以N2,N7-二(间甲苯胺基)-N2,N7-二苯基-2,7-二胺基-9,9-二甲基芴[2,7-bis(pmethoxyphenyl-m-t′olylamino)-9,9-dimethylfluorene,TPF-OMe]为空穴传输层、8-羟基喹啉铝[tris(8-hydroxyquinolinato)aluminum,Alq3)]作为发光层及电子传输层,制备了双层器件。与制作的典型双层结构N,N′-二苯基-N,N′-二(3-甲基苯基)-1,1′-联苯-4,4′-二胺[N,N-′biphenyl-N,N′-bis-(3-methylphenyl)-1,1′-biphenyl-4,4′-diamine,TPD/Alq3]器件相比,电流密度较大,发光效率低,发光谱峰为516 nm,色坐标为(0.30,0.53),为Alq3材料发光。以TPF-OMe为发光层兼空穴传输层,2,9-二甲基-4,7-二苯基-1,10-菲罗啉(2,9-dimethyl-4,7-diphenyl-l,10-phenanthroline,bathocuproine或BCP)为空穴阻挡层,Alq3为电子传输层,制作三层有机电致发光器件。结果表明,光谱峰值在414 nm,色坐标为(0.20,0.24),为蓝色光,是TPF-OMe材料本身发光,器件在15 V电压下电流密度为1137 mA/cm2,亮度为900 cd/m2,在3 V偏压下有最大流明效率,为0.11 lm/W。基于TPF-OMe材料的器件的击穿温度比基于TPD材料的器件高近20℃,原因可能在于TPF-OMe材料比TPD材料高19℃的玻璃化转变温度(Tg)。 Double-layer organic light-emitting devices were fabricated by conventional vacuum deposition method using 2,7-bis (p-methoxyphenyl-m-tolylamino)-9,9-dimethylfluorene (TPFOMe) and N, N'-biphenyl-N, N'-bis- (3- methylphenyl)-1,1'-biphenyl-4, 4'-diamine (TPD) as hole transport layer (HTL), respectively, and tris(8- hydroxyquinolinato) aluminum (Alq3) as electron transport and light emitting layer (ETL and EML). The devices consisting of TPF-OMe as HTL show higher current density but lower luminous efficiency, and a green-blue emission at 516 nm, CIE (0.30,0.53), which is Alq3 electroluminescence spectrum. The devices with the structure of ITO/ TPF-OMe (40 nm)/2,9-dimethyl-4,7- dipheny 1-1,10-phenanthroline (bathocuproine or BCP) (5 nm)/Alq3 (35nm)/ Mg:Ag (300 nm) was also fabricated, which showed blue light emission of TPF-OMe at the peak of 414 nm, CIE coordinates of (0.20, 0.24), current density of 1137 mA/cm^2 and luminance of 900 cd/m^2 at 15 V, the maximum luminous efficiency 0.11 lm/W at 3 V. Also, the devices based on TPF-OMe has 20℃ higher thermal stability compared with that using TPD as HTL, which may be caused by the 19℃ higher glass-transition temperature (Tg) of TPF-OMe than TPD material.
出处 《光学学报》 EI CAS CSCD 北大核心 2007年第8期1455-1459,共5页 Acta Optica Sinica
基金 部级项目和"电子科技大学中青年学术带头人"资助项目
关键词 光学材料 有机电致发光器件 新型空穴传输材料 真空蒸镀 蓝光 optical materials organic light-emitting device novel hole transport material vacuum deposition blue emission
  • 相关文献

参考文献9

  • 1吴有智,郑新友,孙润光,蒋雪茵,张志林,许少鸿.色纯度改进的苯乙烯衍生物高效蓝色有机电致发光器件[J].光学学报,2004,24(8):1120-1124. 被引量:9
  • 2钟建,成建波,陈文彬,杨刚,蒋泉,张磊,林慧.高亮度掺杂红色有机电致发光器件的制备与光电性能研究[J].光学学报,2006,26(9):1392-1396. 被引量:8
  • 3张春玉,刘星元,马凤英,朱万彬,王立军.有机微腔绿色发光二极管[J].光学学报,2006,26(1):111-115. 被引量:11
  • 4Junsheng Yu, Weizhi Li, Yadong Jiang et al. Bright-yellow organic light-emittlng device using novel silole derivative as eraitter[J]. Jpn. J. Appl. Phys. , 2007, 46(2) : L31-L33
  • 5Shizuo Tokito, Hiromitsu Tanaka, Koji Noda et al. Thermal stability in oligomeric triphenylamine/tris (8-quinolinolato) aluminum electroluminescent devices [J]. Appl. Phys. Lett. , 1997, 70(15): 1929-1931
  • 6Yasuhiko Shirota, Yoshiyuki Kuwabara, Hiroshi India.Multilayered organic electroluminescent device using a novel starburst molecule, 4, 41, 4r tris (3-methylphenylphenylamino) triphenylamlne, as a hole transport material[J]. Appl. Phys. Lett. , 1994, 65(7):807-809
  • 7Richard D. Hreha, Candace P. George, Andreas Haldi et al. 2, 7-bias ( diarylamino ) 9, 9 dimethylfuorenes as hole-transport material for organic light-emitting diodes[J].Adv. Func. Mater. , 2003, 13(12): 967-973
  • 8J. S. Kim, F. Cacialli, A. Cola et al. Hall measurements of treated indium tin oxide surfaces[J].Synth. Met. , 2000, 111-112:363-367
  • 9T. P. Nguyen, P. Le Rendu, N. N. Dinh et al. Thermal and chemical treatment of ITO substrates for improvement of OLED performance[J]. Synth. Met., 2003, 138:229-232

二级参考文献21

  • 1WUZhao-Xin WANGLi-Duo QIUYong.Optical Interference Effects by Metal Cathode in Organic Light-Emitting Diodes[J].Chinese Physics Letters,2004,21(7):1370-1373. 被引量:1
  • 2吴有智,郑新友,孙润光,蒋雪茵,张志林,许少鸿.色纯度改进的苯乙烯衍生物高效蓝色有机电致发光器件[J].光学学报,2004,24(8):1120-1124. 被引量:9
  • 3C. W. Tang, S. A. Vanslyke. Organic electroluminescent diodes[J]. Appl. Phys. Lett., 1987, 51(12): 913-915.
  • 4Heinz Bassler. Injection, transport and recombination of charge carriers in organic light-emitting diodes [J]. Polym. Adv.Technol., 1998, 9(7): 402-418.
  • 5M. A. Baldo, M. E. Thompson, S. R. Forrest. High- efficiency fluorescent organic light-emitting devices using a phosphorescent sensitizer[J]. Nature, 2000, 403(6771): 750-753.
  • 6Noriyuki Takada, Tetsuo Tsutsui, Shogo Saito. Strongly-directed emission from microcavity structure in electroluminescent diodes with europium complex as an emitter[J]. Synth. Met. ,1995, 71(1-3): 2099-2100.
  • 7R. H. Jordan, L. J. Rothberg, A. Dodabalapur et al..Efficiency enhancement of microcavity organic light emitting diodes[J]. Appl. Phys. Lett., 1996, 69(14): 1997-1999.
  • 8A. Dodabalapur, L. J. Rothberg, R. H. Jordan et al.. Physics and applications of organic microcavity light emitting diodes[J],J. Appl, Phys,, 1996, 80(12): 6954-6964.
  • 9Chunyu Zhang, Fengying Ma, Yongqiang Ning et al.. Full metal organic microcavity emitting device [C]. Proc. SPIE, 2004,5280:477-480.
  • 10Noriyuki Takada, Tetsuo Tsutsui, Shogo Saito. Control of emission characteristics in organic thin film electroluminescent diodes using an optical-microcavity structure[J]. Appl. Phys.Lett. , 1993, 63(15) : 2032-2034.

共引文献22

同被引文献98

引证文献8

二级引证文献33

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部