期刊文献+

基于模糊聚类的神经网络在数据挖掘分类中的应用研究 被引量:1

Application of Neural Network Based on Fuzzy Clustering in the Classification Algorithm of Data Mining
下载PDF
导出
摘要 常见的决策树分类算法、贝叶斯分类算法、神经网络分类算法为数据挖据分类算法研究提供了重要基础。但面对海量数据时,在时间效率、鲁棒性和精确性上都显示出了不足。为此,本文将模糊聚类的思想引入到神经网络分类算法中,首先通过模糊聚类子模型,将样本数据聚为几个数据子集,然后再采用不同的神经网络对各个数据子集同时进行训练学习。由于经过了模糊聚类子模型的预处理,每个神经网络训练学习样本的复杂性大大减少,使神经网络的学习效率大大提高。最后通过UCI下的实际数据库,对提出的分类算法进行了检验,结果显示了基于模糊聚类的神经网络在数据挖掘分类中应用的有效性。 The common classification algorithms, such as Decision Tree, Bayesian classification and Artificial Neural Network, provide an important foundation for the classification algorithm of data mining. But due to huge amounts of data, these algorithms face some challenges in time efficiency, robustness and accuracy. This paper proposes an artificial neural network model based on fuzzy clustering. First, it clusters the training data into different sub-data using the Fuzzy Clustering Model. Subsequently, it uses various artificial neural networks to train the sub-data. After that, the number and complexity of training data is reduced and the efficiency of the artificial neural network is enhanced greatly. In the end, the UCFs databases are used to prove the usefulness of the new classification algorithm. The results show the validity of application of the Neural Network based on fuzzy clustering in the classification of data mining.
出处 《科技导报》 CAS CSCD 2007年第15期58-61,共4页 Science & Technology Review
基金 国家自然科学基金项目(70571016 70471011)
关键词 数据挖掘 分类 神经网络 模糊聚类 data Mining classification neural network fuzzy clustering
  • 相关文献

参考文献5

  • 1LAST M,MAIMON O.A compact and accurate model for classification[J].IEEE Transactions on Knowledge and Data Engineering,2004,16(2):203-215.
  • 2LIN T S,LOH W Y,SHIH Y S.A comparison of prediction accuracy,complexity and training time of thirty-three old and new classification algorithms[J].Machine Learning,2000,39:203-228.
  • 3CASTILLO O,MELIN P.Hybrid intelligent systems for time series prediction using neural networks,fuzzy logic,and fractal theory[J].IEEE Transactions on Neural Networks,2002,13(6):1395-1408.
  • 4黎俊锋,朱锋峰.基于样本密度的FCM改进算法[J].科学技术与工程,2007,7(4):636-638. 被引量:12
  • 5UCI Machine Learning Repository[DB/OL].[2007-03-10].http://www.ics.uci.edu/~mlearn/MLRepository.html.

二级参考文献5

  • 1张新波.两阶段模糊C-均值聚类算法[J].电路与系统学报,2005,10(2):117-120. 被引量:21
  • 2[1]Selim S Z,Alsultan K.A simulated annealing algorithm for the clustering problem.Pattern Recognition,1991 ;24 (10):1003-1008
  • 3[4]Pal N R,Pal K,Bezdek J C.A mixed c-means clustering model.In:Proc 6th IEEE Conf Fuzzy Syst,1997:11-21
  • 4[5]Chintalapudi K K,Kam M.A noise-resistant fuzzy c-Means algorithm for clustering.In:Proc 7th IEEE Conf Fuzzy Syst,1998:1458-1463
  • 5[6]Banerjee A,Dayé R N.The feasible solution algorithm for fuzzy least trimmed squares clustering.In:Proc 23rd International Conference of NAFIPS,the North American Fuzzy Information Processing Society,2004:222-227

共引文献11

同被引文献5

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部