期刊文献+

基于支持向量机的摩擦学系统状态判别方法研究 被引量:1

Research on State Discriminant Method of Tribology System Based on Support Vector Machine
下载PDF
导出
摘要 传统的摩擦学系统状态的判别采用逐步判别分析法,该方法以油液监测历史数据为依据,通过从不同的油液监测方法中获取信息,构造出状态分类判别数学模型来进行状态判别,具有建模样本量大,建模时间长,对建模人员要求较高的缺点。通过引入支持向量机分类方法,缩短了对摩擦学系统进行状态判别的时间,提高了分类效率,最后通过实例说明了该方法的有效性、实用性和良好的推广应用前景。 The traditional state discriminant of tribology system uses stepwise discriminant analysis method. The method utilizes the information obtained from the history oil monitoring data to construct state classification mathematic model to distinguish the system state, it is complicated and need large quantity of samples and a long time to model. Support vector machine method was introduced to distinguish the tribology system state. The discriminant result of an example shows that support vector machine method shortens the discriminant time and enhances classification efficiency.
出处 《润滑与密封》 CAS CSCD 北大核心 2007年第8期140-142,151,共4页 Lubrication Engineering
关键词 摩擦学系统 逐步判别分析方法 状态判别 支持向量机 tribology system stepwise discriminant analysis method state distinguishing support vector machine
  • 相关文献

参考文献4

  • 1段江涛,李凌均,张周锁,何正嘉,符寒光.基于支持向量机的机械系统多故障分类方法[J].农业机械学报,2004,35(4):144-147. 被引量:20
  • 2C J C Burges.A tutorial on support vector machines for pattern recognition[J].Data Mining and Knowledge Discovery,1998,2(2):121-167.
  • 3Nello Cristianini,John Shawe-Taylor.An Introduction to Support Vector Machines and Other Kernel-based Learning Methods[M].England:Cambridge,2000.
  • 4O Chapelle,V Vapnik,O Bousduct,et al.Choosing multiple parameters for support vector machines[J].Machine Learning,2002,46:131-159.

二级参考文献7

  • 1Guo Guodong, Stan Z Li, Kap Luk Chan. Support vector machine for face recognition. Image and Vision Computing, 2001,19(4): 631~638
  • 2Daniel J Sebald, James A Bucklew. Support vector machine techniques for nonlinear equalization. IEEE Trans. on Signal Processing, 2000, 48(11): 3217~3226
  • 3Harris Drucker, Wu Donghui, Vladimir N Vapnik. Support vector machines for spam categorization. IEEE Trans. on Neural Networks, 1999, 10(5): 1048~1054
  • 4Rychetsky M, Ortmann S, Glesner M. Support vector approaches for engine knock detection. International Joint Conference on Neural Networks. IJCNN 99. Washington, USA, 1999. 969~974
  • 5Vladimir N Vapnik. The nature of statistical learning theory. New York, USA:Springer-Verlag, 1995.
  • 6Chih-Wei Hsu, Chih-Jen Lin. A Comparison of methods for multiclass support vector machines. IEEE Trans. on Neural Networks, 2002, 13(2): 415~425
  • 7肖健华,樊可清,吴今培,杨叔子.应用于故障诊断的SVM理论研究[J].振动.测试与诊断,2001,21(4):258-262. 被引量:31

共引文献19

同被引文献6

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部