期刊文献+

考虑平方阻尼及分段线性刚度铰接塔-油轮系统的分岔与混沌特性 被引量:1

BIFURCATION AND CHAOS OF ALT–TANKER WITH SQUARE DAMPING AND PIECEWISE LINEAR STIFFNESS
下载PDF
导出
摘要 研究了铰接塔-油轮系统在规则激励下的分岔和混沌特性。将该系统简化为单自由度分段线性恢复刚度,含平方阻尼的动力学分析模型,建立了铰接装载塔的分段非线性运动方程。使用增量谐波平衡法(IHB)获得系统周期解,结合Floquet理论判断系统周期解的稳定性,使用增量弧长法进行路径跟踪,获得了系统响应曲线和通向混沌的道路,发现两种由倍周期分岔导致的混沌运动。并且,为了验证系统的混沌运动,计算得到了两种混沌运动从产生到消失过程的最大Lyapunov指数图。 The bifurcation and chaos of ALT (Articulated loading tower)-Tanker system under regular excitation are studied. The system is simplified into single degree of freedom dynamics model with piecewise linear restoring forces and square damping, then the piecewise nonlinear motion equation of ALT is established. The steady periodic solution of ALT is obtained by incremental harmonic balance (IHB) method. The stability analysis is performed by using Floquet theory. The path-following procedure using the incremental arc length method is used to trace response curves and the road of entering into chaos. The system exhibits two kinds of chaotic motion through a sequence of period doubling bifurcations. The max Lyapunov exponent diagrams of two kinds of chaotic motion from beginning to vanishing are obtained for validating chaotic motion of the system.
出处 《工程力学》 EI CSCD 北大核心 2007年第8期163-167,共5页 Engineering Mechanics
基金 教育部高等学校博士点基金项目(20050056052) 国家自然科学基金项目(50679051)
关键词 铰接塔-油轮系统 分段非线性 增量谐波平衡法 分岔 混沌 LYAPUNOV指数 ALT-Tanker system piecewise nonlinear IHB method bifurcation chaos Lyapunov exponent
  • 相关文献

参考文献13

  • 1Thompson J M T.Complex dynamics of compliant off shore structures[J].Proceedings of the Royal Society of London,1983,A387:407-427.
  • 2Thompson J M T,Vokain A R.Sub-harmonic resonances and chaotic motions of the bilinear oscillator[J].IMA Journal of Applied Mathematics,1983,31:207-237.
  • 3Virgin L N,Bishop S R.Catchment regions of multiple dynamic responses in nonlinear problems of offshore mechanics[J].Journal of Offshore Mechanics and Arctic Engineering,1990,112(2):127-133.
  • 4Choi H S,Jack Y K Lou.Non-linear behavior and chaotic motions of an SDOF system with piecewise nonlinear stiffness[J].Journal of Nonlinear Mechanics,1991,26(5):461-473.
  • 5Choi H S,Jack Y K Lou.Nonlinear mooring line induce slow drift motion of an ALP-Tanker[J].Ocean Engineering,1993,20(3):233-246.
  • 6Rgahothama A,Narayanan S.Bifurcation and chaos of an articulated loading platform with piecewise non-linear stiffness using the incremental harmonic balance method[J].Ocean Engineering,2000,27:1087-1107.
  • 7Wong C W,Zhang W S,Lau S L.Periodic forced vibration of unsymmetrical piecewise-linear systems by incremental harmonic balance method[J].Journal of Sound and Vibration,1991,149(1):91-105.
  • 8Lau S L,Zhang W S.Nonlinear vibration of piecewise linear systems by incremental harmonic balance method[J].Journal of Applied Mechanics,1992,59:153-163.
  • 9Chen Yushu,Andrew Y T.Leung.Bifurcation and chaos in engineering[M].London:Springer,1998.311-340.
  • 10Xu L,Lua M W,Cao Q.Nonlinear vibrations of dynamical systems with a general form of piecewise-linear viscous damping by incremental harmonic balance method[J].Physics Letters A,2002,301:65-73.

同被引文献3

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部