期刊文献+

NaCl胁迫对盐芥和拟南芥K^+、Na^+吸收的影响(简报) 被引量:28

Compare of K^+ and Na^+ content absorption in leaves and roots of Thellungiella halophila and Arabidopsis thaliana under NaCl stress
下载PDF
导出
摘要 盐胁迫下植物对K+和Na+的选择性吸收能够代表植物对盐胁迫的适应性。本研究以盐生植物盐芥和甜土植物拟南芥为材料,研究了NaCl胁迫下盐芥和拟南芥幼苗的生长,K+、Na+在根与叶中的含量。结果表明,叶中拟南芥Na+含量逐渐增加,K+含量逐渐减少,K+/Na+逐渐降低;盐芥则完全不同,盐浓度从0逐渐增加到300mmol/L,Na+含量基本没有变化,K+含量先增加然后逐渐减少,K+/Na+先升高然后逐渐降低,100和200 mmol/LNaCl胁迫下,盐芥的K+/Na+分别比拟南芥的高2和5倍。随着NaCl浓度从0逐渐增加到200 mmol/L,盐芥和拟南芥根中Na+和K+的增加和降低趋势相同,盐芥K+的含量随着盐浓度的增加先增加随后逐渐降低,拟南芥K+的含量逐渐降低,相同浓度下根的K+/Na+始终是盐芥高于拟南芥。盐芥表现出盐生植物吸钾拒钠的特性。SNa+/K+值表明盐芥限制地上部分吸收Na+的能力比拟南芥更强。分析结果发现盐胁迫下拟南芥中的Na+与K+含量变化极显著正相关,因此推断它们的吸收通道或载体为单一竞争性。盐芥吸收的Na+与K+含量完全不相关,具有各自独立的载体或通道系统。 The ability to selectively absorb K^+ and Na^+ by Thellungiella halophila can represent its salt tolerance. In this study we stressed T. halophila and Arabidopsis thaliana seedlings with 0- 300 mmol/L NaC1 so lution for 48 h,and K^+ ,Na^+ content in roots and leaves of T. halophila and A. thaliana were determined. The result showed:When NaC1 concentration was increased from 0 to 300 mmol/L, the Na^+ percentage in A. thaliana leaves increased while K^+ percentage decreased sharply and the value of K^+/Na^+ decreased gradually. T. halophila was completely different and with the increased NaC1 concentration, the Na^+ percentage did not change. At first the K^+ percentage increased but then dropped off so the value of K^+/Na^+ increased initially and then gradually decreased. In 100 and 200 mmol/L NaCl stress the K^+/Na^+ value in T. halophila were 2 and 5-fold higher respectively than those in A. thaliana. In roots, the increased Na^+ content and decreased K^+ gave similar results in both T. halophila and A. thaliana. Compared with A. thaliana, the T. halophila selectively absorbed the K^+ but resisted the Na^+. An analysis of these results, showed that the positive correlations of Na^+ and K^+ content in A. thaliana were significant, but they were not correlated in T. halophila, so the Na^+ and K^+ channels in A. thaliana were linked together, but there was no correlation between Na^+ and K^+ content in T. halophila indicating that the Na^+ and K^+ channels or carriers were different.
出处 《草业学报》 CSCD 2007年第4期21-24,共4页 Acta Prataculturae Sinica
基金 中国科学院百人计划和寒区旱区环境与工程研究所科研基金资助
关键词 盐芥 拟南芥 NACL K+ Na+ K+/Na+ Thellungiella halophila Arabidopsis thaliana NaCl K^+ Na^+ K^+/Na^+
  • 相关文献

参考文献12

  • 1Niu X,Bressan R A,Hasegawa P M,et al.Ion homeostasis in NaCl stress environments[J].Plant Physiology,1995,109:735-742.
  • 2Serrano R,Culiaz-Maciá A,Moreno V.Genetic engineering of salt and drought tolerance with yeast regulatory genes[J].Scientia Horticulturae,1999,78:261-269.
  • 3王宝山,邹琦,赵可夫.NaCl胁迫对高粱不同器官离子含量的影响[J].作物学报,2000,26(6):845-850. 被引量:63
  • 4刘爱荣,赵可夫.盐胁迫下盐芥渗透调节物质的积累及其渗透调节作用[J].植物生理与分子生物学学报,2005,31(4):389-395. 被引量:93
  • 5Bressan R A,Zhang C Q,Zhang H,et al.Learning from the Arabidopsis experience,the next gene search paradigm[J].Plant Physiology,2001,127:1354-1360.
  • 6Zhu J K,Genetic analysis of plant salt tolerance using Arabidopsis[J].Plant Physiology,2000,124:941-948.
  • 7Zhu J K.Plant salt tolerance[J].Trends in Plant Science,2001,62:66-71.
  • 8Volkov V,Wang B,Doming P J,et al.Thellungiella halophila,a salt relative of Arabidopsis thaliana,possesses effective mechanisms to discriminate between potassium and sodium[J].Plant,Cell and Environment,2003,27:1-14.
  • 9Vázquez M D,Poschenrieder C,Corrales I,et al.Change in apoplastic aluminum during the initial growth response to aluminum by roots of a tolerant maize variety[J].Plant Physiology,1999,119:435-444.
  • 10高永生,王锁民,张承烈.植物盐适应性调节机制的研究进展[J].草业学报,2003,12(2):1-6. 被引量:101

二级参考文献59

  • 1时永杰,杜天庆.荒漠化的类型及其分布[J].中兽医医药杂志,2003,22(S1):78-82. 被引量:4
  • 2朱兴运,王锁民,阎顺国,沈禹颖,赵银.碱茅属植物抗盐性与抗盐机制的研究进展[J].草业学报,1994,3(3):9-15. 被引量:33
  • 3Syed M A. Nutrient uptake by plants under stress conditions[A]. In:Mohammad pessarakli. Handbook of plant and crop stress[M]. New York: Marcel Dekker, Inc.1999.295-296.
  • 4Greenway H, Munns R. Mechanism of salt tolerance in non-halophytes[J]. Ann Rev. Plant Physiol.,1980,31:149-190.
  • 5Drew M C, Lauchli A. Oxygen dependent exclusion of sodium ions from shoots by root of zea mays in relation to salinity damage[J]. Plant Physiol,1985,79:171-176.
  • 6Cheeseman J M. Mechanisms of salinity tolerance in plants[J]. Plant Physiol.,1988,87:547-550.
  • 7Cramer G R, Epstein E, Lauchli A. Effect s of sodium ,potassium and calcium on salt-stressed barely (Ⅱ)Elemental analysis[J]. Physiologia Plantarum,1991,81:197-202.
  • 8Edward P Glenn, Brown Jed J. Effects of soil salt levels on the growth and water use efficiency of atriplex canescens (Chenopdiaceae) varieties in drying soil[J]. American Journal of Botany,1998,85(1):10-16.
  • 9Flowers T J, Yeo A R. Ion relation of salt tolerance[A]. In: Baker D A, Hall J L. Solute transport in plant cells and tissues[C].New York: John Wiley & Sons,1988.392-412.
  • 10赵可夫.植物耐盐生理[M].北京:科学出版社,1993.58-60.

共引文献286

同被引文献582

引证文献28

二级引证文献350

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部