期刊文献+

基于非线性测度的机器人抓取动态稳定性 被引量:1

Dynamic stability of robotic multi-fingered grasping based on nonlinear measure
下载PDF
导出
摘要 为了研究多指手机器人非线性抓取系统的动态稳定性,引入了l2-范数下非线性算子测度;证明了非线性算子测度类似于矩阵测度对线性系统平衡点唯一性的作用,可以用来分析非线性系统平衡点的唯一性和稳定性;应用非线性测度得到了多指手机器人抓取的动态稳定性,抓取系统靠近抓取平衡点的收敛速度及平衡点吸引域的估计;最后应用抓取实例验证了所得结论。结果表明,可以通过调节抓取系统参数使得抓取指数渐近稳定。 By l^2 -norm, the nonlinear measure is introduced to analyze the dynamic stability of robotic multi-fingered grasping. It is proved that it is similar to the use of matrix measure for linear system, the nonlinear measure can be used to study the uniqueness and stability of nonlinear system equilibrium point so as to study the stability of robotic multi-fingered grasping. With this method, the attraction regions are estimated and the approaching speed of equilibrium point is described. A grasping model is developed to verify the proposed theorem effective. The result shows that the grasping can be exponentially stable by adjusting the grasp parameters. 1 fig, 7 refs.
出处 《长安大学学报(自然科学版)》 EI CAS CSCD 北大核心 2007年第4期103-106,共4页 Journal of Chang’an University(Natural Science Edition)
基金 国家自然科学基金项目(10271093)
关键词 控制工程 非线性测度 抓取系统 动态稳定性 LIAPUNOV函数 control engineering nonlinear measure grasping system dynamic stability Liapunov function
  • 相关文献

参考文献6

  • 1Jen F,Shoham M,Longman R W.Liapunov stability of forced-controlled grasps with a multifingered hand[J].Intl J Robot Res,1996,15(2):137-154.
  • 2王凯明,贾双盈,胡新利.利用加权范数估计机器人抓取系统的吸引域[J].长安大学学报(自然科学版),2007,27(1):103-106. 被引量:1
  • 3Qiao H,Peng J G,Xu Z B.Nonlinear measures:a new approach to exponential stability analysis for hop-field type neural networks[J].IEEE Transactions on Neural Networks,2001,12(2):360-369.
  • 4Xiong C H,Li Y F,Zhang W P.Kinematics of finger with rolling contact[J].Progress Natural Sci,1999,9(3):89-197.
  • 5Xiong C H,Li Y F.On the dynamic stability of grasping[J].International Journal of Robotics Research,1999,18:951-958.
  • 6王凯明,胡新利,贾双盈.l^2-范数下的非线性测度[J].纺织高校基础科学学报,2004,17(3):198-200. 被引量:5

二级参考文献11

  • 1沈毅,吴丽娜,王红瑞,晏晓林.环境影响后评价的进展及主要问题[J].长安大学学报(自然科学版),2005,25(1):56-59. 被引量:51
  • 2张生瑞,邵春福,严海.公路交通可持续发展评价指标及评价方法研究[J].中国公路学报,2005,18(2):74-78. 被引量:75
  • 3马荣国,刘艳妮.公路建设项目综合评价权重确定方法[J].交通运输工程学报,2005,5(2):110-112. 被引量:40
  • 4QIAO Hong,PENG Ji-gen,XU Zong-ben.Nonlinear measures:A new approach to exponential stability analysis for hopfield-type neural networks[J].IEEE Transactions on Neural Networks,2001,12(2):360-369.
  • 5HORN R A,JOHNSON C R.Topics in Matrix Analysis[M].Cambridge:Cambridge University Press,1991.
  • 6LASALLE J P.The Stability of Dynamical Systems[M].U K:J W Arrowsmith Ltd,1976.
  • 7汪应洛.系统工程[M].北京:机械工业出版社,2001.第56页.
  • 8陈珽.决策分析[M].北京:科学出版社,1987..
  • 9萨蒂TL,许树柏.层次分析法——在资源分配、管理和冲突分析中的应用[M].北京:煤炭工业出版社,1988.
  • 10中华人民共和国交通部.公路建设项目可行性研究报告编制办法(选审稿)[M].北京:人民交通出版社,1995.

共引文献4

同被引文献6

  • 1[1]XIONG C H,LI Y F,XUN Y L,et al.On the dynamic stability of grasping[J].International Journal of I Robotics Research,1999,18:951-958.
  • 2[2]XIONG C H,LI Y F,ZHANG W P.Kinematics of finger with rolling contact[J].Progress Natural Sci,1999(9):89-197.
  • 3[3]KELLY D G.Stability in contractive nonlinear neural networks[J].IEEE Trans Biomed Eng,1990,37:231-242.
  • 4[4]HONG Qiao,PENG Jigen,XU Zongben.Nonlinear measure:a new approach to exponential stability analysis for Hopfield-type neural networks[J].IEEE Transactions on Neural Networks,2001,12:360-369.
  • 5[6]MAK K L,PENG J G,XU Z B,et al.A new stability criterion for discrete-time neural networks,nonlinear spectral radius[J].Chaos Solitona & Fractals,2007,31:424-436.
  • 6[7]RANTZER A.A dual to Lyapunov's stability theorem[J].Systems & Control Letters,2001,42:161-168.

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部