期刊文献+

基于神经网络学习机制的应急决策支持中间件模型

Middleware Model of Emergency Decision Support System Based On Neural Network Learning Mechanism
下载PDF
导出
摘要 在传统的决策支持系统模型库、知识库、数据库、解释器等组成部件的基础上,引入中间件技术,构建基于神经网络学习机制的应急决策支持中间件模型(MMEDSS)。该模型由解释中间件(EM)、数据库中间件(DBM)、数据挖掘中间件(DMM)、模型库中间件(MBM)、知识库中间件(KBM)组成,其中EM负责和用户交互,DBM负责数据库访问,MBM和KBM负责向EM提供模型和规则,DMM应用神经网络学习算法,通过案例学习动态更新模型库。 The traditional decision support system (DSS) comprises model base, knowledge base, database and etc. On this basis, this paper proposes a middleware model of emergency decision support system (MMEDSS) based on neural network learning mechanism by referring to middleware technology and neural network technology. This model consists of explaining middleware (EM), data base middleware (DBM), data mining middleware (DMM), model base middleware (MBM) and knowledge base middleware (KBM). Each middleware interacts with another via object request broker (ORB). Here EM is responsible for interaction with user; DBM takes charge for database access; MBM and KBM are responsible for maintenance of model base and knowledge base as well as the supply of models and rules for EM. DMM answers the dynamic update of model base by data mining and case learning with artificial neural network (ANN) algorithm.
作者 王俊丽 胡彧
出处 《山西电子技术》 2007年第4期57-58,68,共3页 Shanxi Electronic Technology
关键词 神经网络 应急决策 应急决策支持中间件 artificial neural network (ANN) emergency decision middleware model of emergency decision support system (MMEDSS)
  • 相关文献

参考文献2

二级参考文献17

  • 1Pinson Suzanne. An intelligent distributed system for strategic decision making[J]. Group Decision and Negotiation, 1997,6(1) :77 - 108.
  • 2Chin Teng Lin, George Lee C S. Neural - network - based fuzzy logic control and decision system[J]. IEEE Transactions on Computers, 1991,40(12): 1 320 - 1 336.
  • 3Baird L C. Residual algorithms: Reinforcement learning with function approximation. In: Proceedings of the 12th International Conference on Machine Learning (ICML95), Tahoe City, California, USA, 1995. 30~37
  • 4Rumelhart D E et al. Learning internal representations by error propagation. In: Rumelhart D E et al, eds. Parallel Distributed Processing: Explorations in the Microstructure of Cognition, Vol.1,Cambridge, MA: MIT Press,1986. 318~362
  • 5Cybenko G. Approximation by superpositions of a sigmoidal function. Mathematics of Control, Signals, and Systems, 1989, 2: 303~314
  • 6Baird L C, Moore A. Gradient descent for general reinforcement learning. In: Kearns M S, Solla S A, Cohn D A eds. Advances in Neural Information Processing Systems 11, Cambrige, MA: MIT Press, 1999. 968~974
  • 7Bertsekas D P, Tsitsiklis J N. Gradient convergence in gradient methods with errors. SIAM Journal on Optimization, 2000, 10(3): 627~642
  • 8Heger M. The loss from imperfect value functions in expectation-based and minimax-based tasks. Machine Learning, 1996, 22(1): 197~225
  • 9Sutton R. Generalization in reinforcement learning: Successful examples using sparse coarse coding. In: Touretzky D S, Mozer M C, Hasselmo M E eds. Advances in Neural Information Processing Systems 8, Cambrige, MA: MIT Press, 1996. 1038~1044
  • 10Kaelbling L P et al. Reinforcement learning: A survey. Jour- nal of Artificial Intelligence Research, 1996, 4: 237~285

共引文献22

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部