期刊文献+

非线性边界条件下抛物问题解的爆破 被引量:1

Blow-up of Solutions of Parabolic Problems with Nonlinear Boundary Conditions
原文传递
导出
摘要 本文讨论在在非线性边界条件下反应-扩散方程解的爆破.当非线性项f,g满足一定的条件时,我们得到其解在有限时间内爆破. The purpose of this paper is to investigate the blow-up solutions of reactiondiffusion equations with nonlinear boundary conditions. Under some assumptions on the nonlinear terms f and g, we show that the solutions blow up in finite time.
出处 《数学学报(中文版)》 SCIE CSCD 北大核心 2007年第5期981-988,共8页 Acta Mathematica Sinica:Chinese Series
关键词 反应-扩散 非线性边界条件 爆破 Reaction-diffusion nonlinear boundary condition blow-up
  • 相关文献

参考文献1

二级参考文献23

  • 1Acosta, C., Rossi, J. D.: Blow-up vs. global existence for quasilinear parabolic systems with a nonlinear boundary condition. Z. Angew. Math. Phys., 48, 711-724 (1997).
  • 2Yamada, Y.: Global solutions for quasilinear parabolic systems with cross-diffusion effect. Nonlinear Anal.,24, 1395-1412 (1995).
  • 3Escobedo, M., Herrero, M. A.: Boundedness and blow-up for a semilinear reaction-diffusion system. J. Differential Equations, 89, 176-202 (1991).
  • 4Escobedo, M., Levine, H. A.: Critical blowup and global existence numbers for a weakly coupled systems of reaction-diffusion equations. Arch. Ration. Mech. Anal., 129, 47-100 (1995).
  • 5Levine, L. A.: A Fujita type global existence-global nonexistence theorem for a weakly coupled system of reaction-diffusion equations. Z. Angew. Math. Phys., 42, 408-430 (1993).
  • 6Dichstein, F., Escobedo, M.: A maximum principle for semilinear parabolic systems and applications.Nonlinear Anal., 45, 825-837 (2001).
  • 7Escobedo, M., Herrero, NI. A.: A semilinear parabolic system in a bounded domain. Ann. Mat. Pura. Appl., 165, 315-336 (1993).
  • 8Zhang, J.: Boundedness and blow-up behavior for reaction-diffusion systems in a bounded domain. Nonlinear Anal., 35, 833-844 (1999).
  • 9Deng, K.: Global existence and blow-up for a system of heat equations with a nonlinear boundary condition. Math. Meth. Appl. Sci., 18, 307-315 (1995).
  • 10Lin, Z. G., Xie, C. H.: The blow-up rate for a system of heat equations with nonlinear boundary conditions. Nonlinear Anal., 34, 767-778 (1998).

同被引文献7

  • 1LAWRENCE C E. Partial differential equations[M] .Portland:American Mathematial Society,USA, 1998.
  • 2AMANN H. Nonhomogeneous linear and quasilinear elliptic and parabolic boundary value problems [ J]. Function Space, Differential Operators and Nonlinear Analysis, Text Sur Mathematik ( Teubner ), 1993,133 : 9-126.
  • 3LI Xiao-jun. The blow-up and asymptotic behavior of the solutions of parabolic problems with nonlinear boundary conditions[ D]. Lanzhou: Lanzhou University, 2005.
  • 4PAZY A. Semigroup of linear operators and applications to partial differential equations[ M]. New York: Springer-Vedag, Inc., 1983.
  • 5ARRIETA J M, CARVALHO A N, RODRIGUEZ-BERNAL A. Parabolic problems with nonlinears boundary conditions and critical nonlinearities[ J]. J Differential Equations, 1999,156: 376-406.
  • 6ARRIETA J M, CARVALHO A N. Abstract parabohe problems with critical nonlinearities and applications to Navier-Stokes and heat equations[ J]. Transactions of the AMS, 1999,1352:285-310.
  • 7RODRIGUEZ-BERNAL A. Attractors for parabolic equations with nonlinear boundary conditions, critical exponents, and singular initial data [J] .J Differential Equations,2002,181 : 165-196.

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部