期刊文献+

自伴算子代数上的某些*-自同态的σ-弱混合性

σ-Weak Mixing of Certain *-Endomorphism of Self-Adjoint Operator Algebras
原文传递
导出
摘要 设A是希尔伯特空间H上的自伴算子代数,α是A上的*-自同态.如果存在单位向量e∈H,使得对任意α∈A和单位向量h∈H,有lim_(n→∞)〈α^n(a)h,h〉=〈αe,e〉成立,那么称α是A上的σ-弱混合的*-自同态.本文研究了这一有趣性质,并得到了一个*-自同态是σ-弱混合的充分条件. Let A be a self-adjoint operator algebra of Hilbert space H, α b a*- endomorphism of A. If there exists a unit element e ∈H such that limn→∞(α^n(α)h, h) = (αe, e) for all α A and h c H with ||h|| = 1, then we say α is a-weak mixing with respect to A. In this paper, we establish a condition for an *-endomorphism to be σ-weak mixing.
作者 郭训香
出处 《数学学报(中文版)》 SCIE CSCD 北大核心 2007年第5期995-998,共4页 Acta Mathematica Sinica:Chinese Series
基金 江西省教育厅科技计划资助项目(2007[295])
关键词 σ-弱混合 *-自同态 等距算子 σ-weak mixing *-endomorphism isometry
  • 相关文献

参考文献6

  • 1Banks J., Brooks J., Cairns G., Davis G., Stacey P., On Devaney's definition of chaos, Amer. Math. Monthly, 1992, 99: 332-334.
  • 2Kawamura S., Covariant representations associated with chaotic dynamical systems, Tokyo Journal of Mathematics, 1997, 20: 205-217.
  • 3Kawamura S., Chaotic maps on measure spaces and behavior of states, RIMS Kokyuroku, 2000, 1151: 126- 138.
  • 4Kawamura S., Chaotic maps on measure spaces and convergence in orbits of states, Proceedings of ICAMMP, 2000, 71-80.
  • 5Kawamura S., Chaotic maps on a measure space and the behavior of the orbit of a states, Tokyo Journal of Mathematics, 2001, 24: 509-533.
  • 6Schipp F., Wade W. R., Simon P., Wash series, Bristol-New York: Adam Hilger, 1990.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部