期刊文献+

幂等算子线性组合的幂等性 被引量:1

Idempotency of Linear Combinations of Two Idempotent Operators
原文传递
导出
摘要 设P与Q是Hilbert空间中的两个不同的幂等算子.本文主要刻画了幂等算子P与Q的线性组合仍是幂等算子的充要条件,从而推广了Baksalary与Baksalary (2000)的结论.值得指出的是,我们通过严密的推理发现,其定理的条件P_1P_2≠P_2P_1是非必要的. Let P and Q be two different idempotents on a Hilbert space. In this note, a complete solution is established to the problem of characterizing all situations, where a linear combination of P and Q is also an idempotent. Besides, we pointed out that the condition PIP2 ≠P2P1 of the statement (b) of the theorem in Baksalary and Baksalarv (2000) can be deleted.
出处 《数学学报(中文版)》 SCIE CSCD 北大核心 2007年第5期1171-1176,共6页 Acta Mathematica Sinica:Chinese Series
基金 国家自然科学基金重点资助项目(10571113)
关键词 幂等算子 正交投影 幂等算子的线性组合 idempotent orthogonal projection linear combinations of idempotents
  • 相关文献

参考文献7

  • 1Baksalary J. K., Baksalary O. M., Idempotency of linear combinations of two idempotent matrices, Linear Algebra Appl., 2000, 321: 3-7.
  • 2Baksalary J. K., Baksalary O. M., Styan G. P. H., Idempotency of linear combinations of an idempotent matrix and a tripotent matrix, Linear Algebra Appl., 2002, 354: 21-34.
  • 3Baksalary J. K., Baksalary O. M., Nonsingularity of linear combinations of idempotent matrices, Linear Algebra Appl., 2002, 388: 25-29.
  • 4Baksalary O. M., Idempotency of linear combinations of three idempotent matrices, two of which are disjoint, Linear Algebra Appl., 2004, 388: 67-78.
  • 5Conway J. B., A course in functional analysis, New York: Springer-Verlag, 1985.
  • 6Du H. K., Yao X. Y., Deng C. Y., Invertibility of linear combinations of two idempotents, Proc. Amer. Math. Soc., to appear.
  • 7Koliha J. J., Rakocevic V., Straskraba I., The difference and sum of projectors, Linear Algebra Appl., 2004 388: 279-288.

同被引文献1

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部