期刊文献+

高相对分子质量聚乳酸共聚物的制备及性能研究 被引量:1

Preparation and Properties of Relative High Molecular Weight Poly(lactic acid)-poly(ε-caprolactone)Copolymer
下载PDF
导出
摘要 聚乳酸(PLA)与聚己内酯多元醇(HO—PCL—OH)的聚氯酯预聚体在双螺杆挤出机内进行熔体扩链,制备了聚乳酸共聚物,研究了熔体扩链产物的相对分子质量、形态结构、热性能和力学性能。结果表明,双螺杆反直挤出制备聚乳酸共聚物是可行的,效果比釜式反应好,熔体扩链后产物的相对分子质量随预聚体比例不同而有很大差异,当 PLA 预聚体与 PCL 预聚体的质量比为60/40时达到最大值166800,进一步增大 PCL 预聚体含量,相对分子质量下降;反应速率与反应温度有很大关系,在反应温度为160、170、180℃时,反应完成时间分别为5、4.5、3 min;共聚物呈现典型的球晶形态,表现出很好的黑十字消光现象,共聚物在120℃时所得球晶半径最大;共聚物的结晶度低于PLA 预聚体的结晶度;共聚物具有较好的力学性能,随 PCL 预聚体含量增加共聚物的韧性增加,拉伸强度与拉伸模量下降。 PLA-PCL copolymer was prepared using a twin screw extruder. The molecular weight, morphology, structure, thermal and mechanical properties were measured. It showed the chain extension of PLA was better realized by reactive extrusion than by batch-typed reactor. When the weight ratio of PLA and PCL was 60/40, high molecular weight was obtained, which decreased with further increasing content of PCL. The reaction rate was dependent on the temperature, 5, 4.5, and 3 mins were needed to complete the reaction at 160 ℃, 170 ℃, and 180 ℃, respectively. The copolymer was semi-crystalline, maltete-cross was clear recognized under polaroid microscopy. The degree of crystallinity of copolymer was lower than that of PLA prepolymer. The mechanical properties of copolymer were enhanced while increasing PCL prepolymer content, but tensile strength and modulus were decreased.
作者 潘璞
出处 《中国塑料》 CAS CSCD 北大核心 2007年第8期13-19,共7页 China Plastics
关键词 聚乳酸 聚己内酯多元醇 相对分子质量 双螺杆反应挤出 扩链 poly ( lactic acid) poly (ε-caprolactone) relative molecular weight twin screw reactive extrusion chain extension
  • 相关文献

参考文献10

  • 1Ouchi T, Ohya Y. Design of Lactide Copolymers as Biomaterials[J]. J Polym Sci,Part A:Polym Chem, 2004,42(10),453-456.
  • 2赵耀明,张军,麦杭珍.直接缩聚法合成聚乳酸的研究[J].合成纤维,2001,30(3):3-5. 被引量:63
  • 3宇恒星,王朝生,黄南薰,唐志廉.聚乳酸的聚合方法[J].化工新型材料,2002,30(3):16-18. 被引量:28
  • 4封瑞江,时维振.聚合方法和扩链剂对乳酸聚合物相对分子质量的影响[J].石油化工,2001,30(2):103-105. 被引量:21
  • 5Carson D,Degee P, Fritiz H G, et al. Free Radical Branching of Polylactide by Reactive Extrusion[J]. Polym Eng Sci, 1998,38(6) : 311-314.
  • 6Jacobsen S, Dubois P, Fritiz H G, et al. Polylactide(PLA)-A New Way of Production[J]. Polym Eng Sci, 1999,39(10): 1311-1315.
  • 7R Miyoshi, N Hashimoto, K Koyanagi, et al. Biodegradable Poly(lactic acid) with High Molecular Weight[J]. International Polymer Processing, 1996, (11) : 320-327.
  • 8Teng C, Yang K, Ji P, et al. Synthesis and Characterization of Poly( lactic acid)-poly(ε-caprolactone) Multiblock Copolymers by Melt Condensation[J]. J Polym Sci Part A: Polym Chem, 2004,42(5) :5045-5051.
  • 9Kricheldorf H R, Lee S R, Bush S. Polylactones 36:Macrocyclic Polymerization of Lactides with Cyclic Bu2Sn Initiators Derived from 1,2-ethanediol, 2-mercaptoethanol, and 1,2- dimercaptoethane[ J ]. Macromolecules, 1996, 29 (7) : 1379 - 1384.
  • 10Hiltunen K, Seppala J V, Harkonen M. Effect of Catalyst and Polymerization Conditions on the Preparation of Low Molecular Weight Lactic Acid Polymers [ J ]. Macromolecules, 1997,30(2) : 373-379.

二级参考文献9

共引文献99

同被引文献11

  • 1Hiroyuki I, Eiko I, Takehisa M, et al. Mechanical Responses of a Compliant Electrospun Poly (L-lactide-co-ε- caprolactone) Small-diameter Vascular Graft[J]. Biomaterials, 2006, 27(8): 1470-1478.
  • 2Grijpma D W, Albert J, Penning P. (Co) Polymers of L- lactide, 1. Synthesis, Thermal Properties and Hydrolytic Degradation [J]. Maeromol Chem Phys, 1994, 195 (5): 1633-1647.
  • 3Contreras J, Darymar D. Ring-opening Copolymerization of L-lactide with ε-eaprolaetone Initiated by Diphenylzinc [J]. Polym Int, 2006, 55(9): 1049-1056.
  • 4K asperczyk J, Bero M. Coordination Polymerization of Lactides, 4^a) the Role of Transesterification in the Copolymerization of L, L-lactide and e caprolactone [J]. Makromol Chem, 1993, 194(3): 913-925.
  • 5Kasperczyk J. Copolymerization of Glycolide and ε-caprolactone, 1. Analysis of the Copolymer Microstructure by Means of ^1H and ^13C NMR Spectroscopy [J]. Macromol Chem Phys, 1999, 200(4): 903-910.
  • 6Dobrzynski, Suming L, Kasperczyk I, et al. Structure property Relationships of Copolymers Obtained by Ringopening Polymerization of Glycolide and ε caprolactone. Part 1. Synthesis and Characterization [J]. Biomacromolecules, 2005, 6(1): 483-488.
  • 7Nalampang K, Moltoy R, Punyodom W. Synthesis and Characterization of Poly ( L-lactide-co-ε-caprolactone )Copolymers; Influence of Sequential Monomer Addition on Chain Microstructure[J]. Polym Adv Technol, 2007, 18(3) : 240-248.
  • 8Wei Zhiyong, Liu Lian, Qu Chao,et al. Microstructure Analysis and Thermal Properties of L-lactide/ε-caprolactone Copolymers Obtained with Magnesium Octoate[J]. Polymer, 2009,50(6): 1423-1429.
  • 9Youngmee J, Soo H K, Hee J Y, et al. Application of an Elastic Biodegradable Poly (L-LAetide-co-epsiv-caprolactone) Scaffold for Cartilage Tissue Regeneration[J]. J Biomater Sci, Polym Ed, 2008,19(8) : 1073-1085.
  • 10Baimark Y, Molloy R, Molloy N, et al. Synthesis, Characterization and Melt Spinning of a Block Copolymer of L- lactide and Epsilon-caprolactone for Potential Use as an Absorbable Monofilament Surgical Suture[J]. J Mater Sci Mater Med, 2005, 16(8): 699-707.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部