摘要
通过引进了范—ω*一致连续的定义,指出了若Banach空间X中每个开凸子集D上定义的连续凸函数f(x)的次微分在D的一个稠集上范—ω*一致连续,则f(x)一定在D的一个稠Gδ集上Gateaux可微。
The definition of norm ω * consistence continuity is introduced in this paper.It is shown that if the secondary derivative of a convex continuous function on banach space defined on an open convex subset of D is norm ω * consistence continuity on a dense subset of its domain,the function is gateaux differentiable on a dense G δ subset .
出处
《桂林电子工业学院学报》
1997年第2期53-55,共3页
Journal of Guilin Institute of Electronic Technology