期刊文献+

基于量子单向函数的量子门限签名方案 被引量:3

A (t,w) Quantum Threshold Signature Scheme Based on Quantum One-way Function
下载PDF
导出
摘要 本文首次研究了量子签名中的门限签名问题,参考了LüXin和Feng Deng-guo的基于量子单向函数的签名协议,然后结合经典密码学中的Shamir门限方案提出了一个(t,w)门限量子签名的方案。方案是安全的(t,w)量子门限签名方案,安全性依赖于量子单向函数的存在,量子纠错码保证了量子态的真实性,量子一次一密保证了量子信息在信道的安全性。方案是对已知量子态的签名和验证。 In this paper, we investigated quantum digital signature and presented a (t,w) quantum threshold signature scheme, that is based on the LU Xin and Feng Deng-guo's protocol and Shamir threshold scheme. The security of scheme relies on the existence of quantum one-way functions, the authenticity of the quantum information is guaranteed by quantum error correction codes and security of the quantum information on channel is ensured by quantum one-time pad. This scheme is signature and validation on known quantum states.
出处 《微计算机信息》 北大核心 2007年第18期60-61,42,共3页 Control & Automation
基金 北京市自然科学基金资助项目(4063040) 北京电子科技学院科研基金项目
关键词 量子签名 量子密码 量子单向函数 (t w)门限方案 Quantum signature Quantum cryptography Quantum one-way functions (t,w) Threshold scheme
  • 相关文献

参考文献10

  • 1Wiesner S.Conjugate coding[J].Sigact News,1983,15(1):78-88.
  • 2Bennett C H,Brassard G.An update on quantum cryptography[A].Advances in Cryptology:Proceedings of Crypto 84[C].Springer-Ver-lag,1984,475-480.
  • 3张声雷.基于量子计算机的数据库搜索[J].微计算机信息,2006(01X):184-186. 被引量:2
  • 4D.Gottesman,I.Chuang,Quantum digital signatures,Technical report,available at http://arxiv.org/abs/quant-ph/0105032,2001.
  • 5G.Zeng and K.Christoph,An arbitrated quantum signature scheme[J],Physical review A,Vol.65,pp.042312,2002.
  • 6Xin Lü,Deng-guo Feng,Quantum digital signature based on quantum one-way functions,Technical report,available at http://arxiv.org/abs/quant-ph/0403046,2003.
  • 7吕欣,马智,冯登国.量子消息认证协议[J].通信学报,2005,26(5):44-49. 被引量:3
  • 8M.Nielson,I.Chuang,Quantum computation and quantum Information[A],Cambridge university press2000.
  • 9H.Buhrman,R.Cleve,J.Watrous and R.Wolf,Quantum fingerprinting,Physical Review letters[J],Vol.87,pp.167902-167904,2001.
  • 10P.Boykin,V.Roychowdury,Optimal encryption of quantum bits,Physical review A,Vol.67,pp.0423171-0423175,2003.

二级参考文献20

  • 1向本祥,喻寿益.计算机解耦控制系统实验装置[J].微计算机信息,2005,21(1):25-26. 被引量:10
  • 2GOLDREICH O. Foundations of Cryptography[M].Cambridge University Press, 2001.
  • 3BOYKIN P O, ROYCHOWDURY V. Optimal encryption of quantum bits[J]. Physical Review A, 2003, 67(4):0423171-0423175.
  • 4DUMAIS P, MAYERS D, SALVAIL L. Perfectly concealing quantum bit commitment from any quantum one-way permutation[A].Advances in Cryptology: Proceedings of EUROCRYPT 2000, LNCS 1807[C].Springer,Bruges, 2000. 300-315.
  • 5SHOR P. Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer[J]. SIAM Journal on Computing, 1997, 26(5): 1484-1509.
  • 6GROVER L K. A fast quantum mechanical algorithm for database search[A]. Proc of 28th STOC[C].1996. 212-219.
  • 7BERNSTEIN E, VAZIRANI U. Quantum complexity theory[J]. SIAM Journal on Computing, 1997, 26(5): 1411-1484.
  • 8BENNETT C H, BERNSTEIN E, BRASSARD G, VAZIRANI U.Strengths and weaknesses of quantum computing[J].SIAM Journal on Computing, 1997, 26(5):1510-1523.
  • 9OKAMOTO T, TANAKA K, UCHIYAMA S. Quantum public-key cryptosystems[A]. Proceedings of Crypto'2000, LNCS 1880[C].Springer, 2000. 147-165.
  • 10MCELIECE R J. A Public-Key Cryptosystem Based on Algebraic Coding Theory[R]. JPL DSN Progress Report, 1978.114-116.

共引文献3

同被引文献30

  • 1曾贵华.特洛依木马攻击下的量子密码安全性(英文)[J].软件学报,2004,15(8):1259-1264. 被引量:2
  • 2王剑,张权,唐朝京.针对经典消息的高效量子签名协议[J].通信学报,2007,28(1):64-68. 被引量:8
  • 3温晓军,刘云,张鹏云.基于EPR粒子对的信息签名协议[J].大连理工大学学报,2007,47(3):424-428. 被引量:11
  • 4BENNETT C H, BRASSARD G. Quantum cryptography public-key distribution and coin tossing[ C]//Proc of IEEE International Conference on Computers, Systems and Signal Processing. India: Bangalore Press, 1984 : 175-179.
  • 5BENNETT C H. Quantum cryptography using any two nonorthogonal states[ J ]. Phys Rev kerr,1992,68(21 ) :3121-3124.
  • 6DENG F G, LONG G L. Controlled order rearrangement encryption for quantum key distribution[J]. Phys Roy A,2003,68(4)2315- 1-4.
  • 7LUCAMARINI M, MANCINI S. Secure deterministic communication without entanglement [ J ]. Phys Rev Lett,2005,94 ( 14 ) : 140501- 1-4.
  • 8EKERT A K. Quantum cryptography based on Bell' s theorem [ J ]. Phys Rev Lett,1991,67(6) :661-664.
  • 9SUDHEESH C, LAKSHMIBALA S, BALAKRISHNAN V. Dynamics of quantum observables in entangled states[ J]. Physics Letters A, 2009,373(32) :2819-2874.
  • 10WANG Shu-mei, MA Hong-yang. Quantum secure communication network on EPR states[ C ]//Proc of International Conference on Network and Parallel Computing. 2008:545-548.

引证文献3

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部