期刊文献+

基于切割子模块的单样本人脸识别 被引量:2

One sample per person face recognition based on partitioned sub-blocks
下载PDF
导出
摘要 针对单样本人脸识别问题,本文提出了一种基于单样本切割的子模块主成分分析方法。该方法将单样本人脸图片切割成大小相同、互不重叠的多个子模块,切割后的子模块集构成新的样本集。对所有子模块作主成分分析(PCA)并提取特征,同一人脸的子模块特征系数作为分类识别的依据。在ORL人脸库上的测试结果表明,同PCA,(PC)2A,Sub-pattern LDA相比,该方法具有更好的识别率。 In order to deal with the problem of face recognition with one sample per person, a method called sub-block Principal Component Analysis (PCA) based on partitions of the sample is presented in this paper. The method first divides the sample into a few sub-blocks which have equal size and are non-overlapping, and then treats all of the sub-blocks as a new sample set. Finally, PCA is performed on all the sub-blocks so as to extract features. Classification is done according to the projection coefficients of sub-blocks of a person. The proposed approach is implemented on the ORL database and outperforms other methods such as PCA, (PC)2A and Sub-pattern LDA.
出处 《光电工程》 EI CAS CSCD 北大核心 2007年第8期110-114,共5页 Opto-Electronic Engineering
关键词 单样本 子模块 主成分分析 人脸识别 one sample per person sub-block principal component analysis face recognition
  • 相关文献

参考文献11

  • 1Brunelli R,Poggio T.Face recognition:Feature versus templates[J].IEEE Trans.on Pattern Anal Machine Intell,1993,15(10):1042-1052.
  • 2Wu J,Zhou Z H.Face Recognition with one training image per person[J].Pattern Recognition Letters,2002,23(14):1711-1719.
  • 3Chen S C,Zhang D Q,Zhou Z H.Enhanced (PC)2A for face recognition with one training image per person[J].Pattern Recognition Letters,2004,25(10):1173-1181.
  • 4Wang J,Plataniotis K N,Venetsanopoulos A N.Selecting discriminant eigenfaces for face recognition[J].Pattern Recognition Letters,2005,26(10):1470-1482.
  • 5Bishop C M.Neural Networks for Pattern Recognition[M].New York:Oxford University Press,1995.
  • 6Tan X,Chen S C,Zhou Z H,et al.Face recognition from a single image per person:A survey[J].Pattern Recognition,2006,39(9):1725-1745.
  • 7Turk M,Pentland A.Eigenfaces for recognition[J].Journal Cognitive Neuroscience,1991,3(1):71-86.
  • 8Lades M,Vorbruggen J,Buhmann J,et al.Distortion invariant object recognition in the dynamic link architecture[J].IEEE Trans.on Computers,1993,42(3):300-311.
  • 9Belhumeur P,Hespanha J,Kriegman D.Eigenfaces vs.Fisherfaces:recognition using classspecific linear projection[J].IEEE Trans.on Pattern Analysis and Machine Intelligence,1997,19(7):711-720.
  • 10Chen S C,Liu J,Zhou Z H.Making FLDA applicable to face recognition with one sample per person[J].Pattern Recognition,2004,37(7):1553-1555.

同被引文献7

  • 1Tan Xiao-yang,Chen Song-can.Face recognition from a single image per person : A survey[J].Pattern Recognition, 2006,39 (9) : 1725- 1745.
  • 2Wu Jian-xin,Zhou Zhi-Hua.Face recognition with one training image per person[J].Pattern Recognition Letters,2002,23 (14) : 1711-1719.
  • 3Chen Song-can,Zhang Dao-qiang,Zhou Zhi-hua.Enhanced(PC)2A for face recognition with one training image per person[J].Pattern Recognition Letters,2004,25(10) : 1173-1181.
  • 4Turk M,Pentland A.Eigenfaces for recognition[J].Journal of Cognitive Neuroscience, 1991,3( 1 ) :71-86.
  • 5Yang J,Zhang D.Two-Dimensional PCA:A new approach to appearance-based face representation and recognition[J].IEEE Transaction on Pattern Analysis and Machine Intellgience,2004,26(1): 131-137.
  • 6周杰,卢春雨,张长水,李衍达.人脸自动识别方法综述[J].电子学报,2000,28(4):102-106. 被引量:156
  • 7李刚,高政.人脸自动识别方法综述[J].计算机应用研究,2003,20(8):4-9. 被引量:43

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部