期刊文献+

Q3算法的改进及其在潜在通路分析中的应用 被引量:2

Improvements of Q3 algorithm and its application in sneak circuit analysis
下载PDF
导出
摘要 为了克服基于定性仿真的潜在通路的局限性,提出一种改进的Q3算法(ImQ3),并将其用于潜在通路分析(SCA).ImQ3对Q3算法作了3方面的改进:定性状态描述的改进,单调约束关系的改进以及步长精炼技术的改进.分别用定性仿真,Q3算法以及ImQ3算法对一个典型电路进行潜在通路分析.统计结果发现,ImQ3算法的正确率达到98%. To fully utilize quantitative information and discover more sneak circuits as possible, an improved semiquantitative simulation (ImQ3) algorithm based on Q3 is introduced into sneak circuit analysis. The improvements of ImQ3 consists three aspects: Improvement of qualitative states description, monotonic constraint and step size refinement. ImQ3 predicts all functions of system using semi-quantitative model of system, and the sneak circuits are discovered by comparison predicted functions with designed functions under the same conditions. A typical example is used to test qualitative simulation, Q3 algorithm and ImQ3 algorithm respectively. The statistical result shows that the accuracy of ImQ3 is 98%.
出处 《控制与决策》 EI CSCD 北大核心 2007年第8期893-898,共6页 Control and Decision
关键词 潜在通路分析 Q3算法 半定量仿真 步长精炼技术 定性状态 Sneak circuit analysis Q3 algorithm Semi-quantitative simulation Step size refinement Qualitative state
  • 相关文献

参考文献10

  • 1李学锋,钱玲.航天控制系统潜在分析技术应用研究[J].航天控制,2000,18(1):26-30. 被引量:14
  • 2Christopher J Price.Effective automated sneak circuit analysis[C].2002 Proc Annual Reliability and Maintainability Symposium.Washington:IEEE Press,2002:356-360.
  • 3Price C J,Snooke N,Landry J.Automated sneak identification[J].Artificial Intelligent,1996,9 (4):423-427.
  • 4Price C J.AutoSteve:Automated electrical design analysis[C].14th European Conf on Artificial Intelligent.Berlin:Humboldt University,2000:456-460.
  • 5刘丙杰,胡昌华,蔡光斌.半定量仿真综述[J].系统仿真学报,2006,18(9):2375-2380. 被引量:7
  • 6Daniel Berleant.The use of partial quantitative information with qualitative reasoning[D].Austin:University of Texas,1991.
  • 7Daniel Berleant,Benjamin Kuipers.Qualitative and quantitative simulation:Bridging the gap[J].IEEE Trans on Systems,Man and Cybernetic,1992,22(4):1-41.
  • 8涂永忠,白方周,方瑾,陈忠保,邵晨曦.一种高效的并行定性仿真方法TPQSIM[J].计算机学报,2000,23(5):459-469. 被引量:15
  • 9Neal Snooke,Chris Price.Challenges for qualitative electrical reasoning in automotive circuit simulation[C].1998 Proc Annual Reliability and Maintainability Symposium.California,1998:356-360.
  • 10邵晨曦,张琪,白方周.面向分段函数的定性仿真算法PQSIM及其在脑电图研究中的应用[J].计算机学报,2001,24(12):1287-1293. 被引量:5

二级参考文献65

  • 1白方周,陈源,鲍忠贵.一个基于QSIM算法的定性仿真系统GQSS[J].信息与控制,1996,25(1):49-57. 被引量:3
  • 2白方周.定性建模、仿真和控制.99′学术论文集:系统仿真技术及其应用[M].合肥:中国科学技术大学出版社,1999.7-19.
  • 3Wendling F,Biol Cybern,2000年,83卷,4期,367页
  • 4白方周,99'学术论文集:系统仿真技术及其应用,1999年,7页
  • 5白方周,定性仿真导论,1998年
  • 6冯应琨,脑电图图谱,1993年
  • 7周树舜,癫痫学,1987年
  • 8Enrico Sciubba. Hybrid Semi- Quantitative Monitoring and Diagnostics of Energy Conversion Processes[J]. Int.J.Thermodynamics(S0378-3812), 2004, 7(2): 95-106.
  • 9Kenneth D Forbus, Leo C Ureel. Qualitative modeling for middle-school students[R]. The 18th International Qualitative Reasoning Workshop. 2004.
  • 10Kenneth D Forbus. Helping children become qualitative modelers[R].The 16th International Qualitative Reasoning Workshop. 2002.

共引文献37

同被引文献21

  • 1刘丙杰,胡昌华,蔡光斌.半定量仿真综述[J].系统仿真学报,2006,18(9):2375-2380. 被引量:7
  • 2王洪江,孙保民,田进步.定性仿真在锅炉状态监控和故障诊断中的应用[J].工程热物理学报,2007,28(1):12-14. 被引量:4
  • 3Samaga R, Klamt S. Modeling approaches for qualitative and semi- quantitative analysis of cellular signaling networks [ J ]. Cell Communi- cation and Signaling,2013,11 ( 1 ) :43.
  • 4Evans P D, Miller C M, Marin D, et al. FDG-PET/CT Characterization of Adrenal Nodules:Diagnostic Accuracy and Interreader Agreement Using Quantitative and Qualitative Methods [ J ]. Academic Radiology, 2013,20 ( 8 ) :923 - 929.
  • 5Subroto T, Miroux A, Mortensen D, et al. Semi-quantitative predictions of hot tearing and cold cracking in aluminum DC casting using numeri- cal process simulator[ C]//IOP Conference Series: Materials Science and Engineering. IOP Publishing,2012,33 ( 1 ) :012068.
  • 6Brian A Kyekelhahn, Kenneth D Forbus. Jitter in Self-Explanatory Sim- ulation [ R ]. The Eighteenth International Qualitative Reasoning Work- shop, 2004.
  • 7Heidtke K R,Schulze - Kremer S. Improving semi-quantitative reason- ing by landmark approximation [ C ]//Proc. 13th Int. Workshop on Qualitative Reasoning About Physical Systems, Scotland. 1999.
  • 8Berleant D, Kuipers B J. Qualitative and quantitative simulation : bridg- ing the gap[ J]. Artificial Intelligence, 1997,95 ( 2 ) :215 - 255.
  • 9Paparella F, Dominguez L, Cortinovis A, Mercangoz M, Pareschi D, Bittanti S. Load sharing optimization of parallel compressors. In: Proceedings of the 2013 European Control Conference. Zurich, Switzerland: IEEE, 2013. 4059-4064.
  • 10Gravdahl 3 T, Egeland O. Compressor Surge and Rotating StMI: Modeling and Control New York: Springer Publish- ing Company, 2011.

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部