期刊文献+

两能级封闭量子系统任意量子态的最优制备 被引量:1

Optimal preparation of arbitrary quantum state of two-level closed quantum system
下载PDF
导出
摘要 在分析单量子位的Bloch球面表示的基础上,结合量子门实现量子态幺正演化的量子态调控机制,提出一种针对两能级封闭量子系统任意量子态的最优制备策略.该策略首先建立两能级量子系统及其控制场的模型;然后借助李群李代数,由经典最优控制的思想和约化动力学来获得最优控制,从而达到两能级封闭量子系统任意量子态的最优制备.理论分析与仿真实验表明了该策略的优越性. Based on analyzing the presentation of the single quantum state on Bloch sphere, a strategy of optimal preparation of arbitrary quantum state of two-level closed quantum systems is proposed. With the help of quantum mechanical logic gate, manipulation of quantum system is realized, on unitary-evolution. The models of two-level quantum systems and its control systems are set up, Then, by using the Lie group, and with classical control theory and dynamics of quantum system, a strategy of optimal preparation of arbitrary quantum state is developed. The theoretical analysis and the simulation of the preparation show the advantage of the idea.
出处 《控制与决策》 EI CSCD 北大核心 2007年第8期912-917,共6页 Control and Decision
关键词 两能级量子系统 量子调控 最优控制 最优制备 Two-level quantum systems Manipulation of quantum system Optimal control, Optimal preparation
  • 相关文献

参考文献10

  • 1Peirce A P,Dahleh M,Rabitz H.Optimal control of quantum-mechanical systems:Existence,numerical approximation,and applications[J].Physical Review A,1988,37(12):4950-4964.
  • 2董道毅,陈宗海.电子自旋的时间量子控制[J].控制与决策,2006,21(1):38-41. 被引量:4
  • 3James M R.Risk-sensitive optimal control of quantum systems[J].Physical Review A,2004,69(3):032108-(1-14).
  • 4Xu R X,Yan Y J,Ohtsuki Y,et al.Optimal control of quantum non-Markovian dissipation:Reduced Liouvillespace theory[J].J of Chemical Physics,2004,120(4):6600-6608.
  • 5Ian Glendinning.The Bloch sphere[C].QIA Meeting.Vienna,2005.
  • 6http://www.lboro.ac.uk/departments/ph/QIC/Fig%202.1% 20Bloch.pdf.
  • 7Michael A Nielsen,Isaac L Chuang.Quantum computation and quantum information[M].Cambridge:Cambridge University Press,2000.
  • 8Walsh G C,Montgomery R,Sastry S.Optimal path planning on matrix Lie groups[R].Berkeley:Electronics Research Laboratory,1994.
  • 9丛爽.量子力学控制系统导论[M].北京:科学出版社,2005.
  • 10Khaneja N,Glaser S J.Cartan decomposition of SU (2^m)[C].Constructive Controllbility of Spin Systems and Universal Quantum Computing.Cambridge,2000.

二级参考文献12

  • 1陈宗海,董道毅.量子控制论[J].量子电子学报,2004,21(5):546-554. 被引量:8
  • 2Nielsen M A, Chuang I L. Quantum Computation and Quantum Information [M]. Cambridge: Cambridge University Press, 2000: 2-59.
  • 3Tarn T J,Huang G,Clark J W. Modelling of Quantum Mechanical Control Systems [J]. J of Mathematical Modelling, 1980,1(1): 109-121.
  • 4Albertini F, D'Alessandro D. Notions of Controllability for Bilinear Multilevel Quantum Systems[J]. IEEE Trans on Automatic Control, 2003, 48(8):1399-1403.
  • 5D'Alessandro D, Dahleh M. Optimal Control of Two-level Quantum Systems[J]. IEEE Trans on Automatic Control, 2001,46 (6): 866-876.
  • 6Lloyd S. Coherent Quantum Feedback [J]. Physical Review A, 2000,62: 1-12.
  • 7Dong D Y, Zhang C B, Chen Z H, Quantum Feedback Control Using Quantum Cloning and State Recognition[A]. Proc of the 16th IFAC World Congress [C].Prague, 2005: 1965-1971.
  • 8Doherty A C, Habib S, Jacobs K, et al. Quantum Feedback Control and Classical Control Theory [J].Physical Review A, 2000,62:1-14.
  • 9Yanagisawa M,Kimra H. Transfer Function Approach to Quantum Control-Part I: Dynamics of Quantum Feedback Systems [J]. IEEE Trans on Automatic Control,2003,48(12):2107-2120.
  • 10Yanagisawa M,Kimra H. Transfer Function Approach to Quantum Control-Part Ⅱ: Control Concepts and Applications [J]. IEEE Trans on Automatic Control,2003,48(12): 2121-2132.

共引文献3

同被引文献15

  • 1张靖,李春文,吴热冰.开放环境下多比特量子计算机的相干控制模型[J].自动化学报,2005,31(5):759-764. 被引量:2
  • 2张靖,李春文.基于相干控制的二能级量子系统退相干抑制[J].控制与决策,2006,21(5):508-512. 被引量:4
  • 3陈宗海,朱明清,张陈斌,李明.以磁场为控制场的量子比特系统量子态的最优制备[J].吉林大学学报(工学版),2007,37(3):660-666. 被引量:1
  • 4Preskill J. Lecture Notes for Physics 229: Quantum Information and Computation [M]. California: California Institute of Technology. 1998.
  • 5Shor P W. Algorithms for quantum computation: discrete algorithms and factoring [C]// Proceeding of the 35th Annual Symposium on Foundation of Computer Science 1994, 11, Santa Fe, NM, USA. USA: IEEE Computer Society Press, 1994:124-134.
  • 6Gardiner C W, Zoller F, Quantum Noise: A Handbook of Markovian and non-Markovian Quantum Stochastic Methods with Applications to Quantum Optics [M]. Berlin: Springer, c2000.
  • 7Shor P W. Scheme for Reducing Decoherence in Quantum Computer Memory [J]. Phys. Rev. A (S1094-1622), 1995, 52(4): R2493-R2496.
  • 8Duan L M, Guo G C. Preserving coherence in quantum computation by pairing quantum bits [J]. Phys. Rev. Lett. (S1079-7114), 1997, 79(10): 1953-1956.
  • 9Lloyd S. Coherent Quantum Feedback [J]. Phys. Rev. A (S 1094-1622), 2000, 62(2): 1-12.
  • 10Adelsward A, Wallentowitz S. Rotational master equation for cold laser-driven molecules [J]. Phys. Rev. A (St094-1622), 2003, 67(6): 063805.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部