期刊文献+

基于最小二乘支持向量机回归的单桩竖向极限承载力预测

Prediction model of ultimate vertical bearing capacity of single pile based on least squares support vector machines
下载PDF
导出
摘要 基于单桩载荷试验数据,采用最小二乘支持向量机(LSSVM)回归的方法,建立了单桩竖向极限承载力的预测模型.利用文献中桩的载荷试验数据来训练LSSVM模型,并确定了模型参数.研究结果表明,同常用的BP网络相比,LSSVM预测模型具有学习速度快、预测性能较好、选择参数少等优点,是一种有效的预测单桩极限承载力的方法. Prediction model of ultimate vertical bearing capacity of single pile was established based on single pile loading test data using least squares support vector machines (LSSVM) regression. The LSSVM model was trained with the pile loading test data from the references, and the parameters of the model were selected. The results show that the LSSVM model approach is better than classical back-propagation (BP) neural network in terms of higher computation speed, less forecast errors, and less selective parameters. It is an effective method to predict ultimate vertical bearing capacity of single pile.
作者 杨磊 徐洪钟
出处 《南京工业大学学报(自然科学版)》 CAS 2007年第4期21-24,共4页 Journal of Nanjing Tech University(Natural Science Edition)
基金 江苏省普通高校自然科学研究计划资助项目(05KJB560040) 江苏省自然科学基金资助项目(BK2006565)
关键词 单桩 最小二乘支持向量机 竖向极限承载力 预测模型 single pile LSSVM ultimate vertical bearing capacity predicting model
  • 相关文献

参考文献3

  • 1诸伟琦,陈文才.单桩极限承载力的神经网络预测[J].上海大学学报(自然科学版),2004,10(6):639-642. 被引量:7
  • 2Vapnik V N.The nature of statistical learning theory[M].New York:Springer,2000.
  • 3Suykens J A K,Vandewalle J.Least squares support vector machines[J].Neurel Processing Letters,1999,9(3):293-300.

二级参考文献1

  • 1Ghabonss J, Sidasta D E, Lade P V. Neural network based modeling in geomechnics. Computer Methods and Advances in Geomechnics[M]. Siriwardane H J, Zaman M M, eds. Morgantown: Sirimavdane & Zaman, 1994.34-47.

共引文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部