期刊文献+

基于支持向量回归集成的陀螺仪参数漂移预测

Parameter Drift Forecasting of Gyro Based on Ensemble of Support Vector Regression
下载PDF
导出
摘要 泛化能力是智能方法用于参数预测的最重要的问题之一,提出了支持向量回归集成方法。为了增加个体之间的差异性,提出了基于聚类方法的个体生成方法。首先利用聚类方法将样本分为若干子类,然后用不同结构的支持向量回归学习不同的样本子类,权值由个体在验证集上的泛化误差决定。将ESVR陀螺仪参数飘移数据的预测,并与单支持向量回归,单神经网络,神经网络集成以及组合预测方法进行比较。结果证实,ESVR的预测精度总体高于其他方法。 Generalization performance is one of the most important problems of intelligent approaches for parameters forecasting. This paper presents an ensemble of support vector regression (ESVR) which has better generalization performance than other intelligent approaches. To increase the diversity among individuals of ensemble, the paper proposes an individual generating approach based on clustering technique. Firstly, ESVR is used to classify training samples as several subclasses that are used to train different individuals with different kernel functions. The ensemble weights of individuals are determined by the generalization errors on the validation sets. ESVR is tested on the parameter drift data of gyroscope. By comparing single SVR, single neural network, neural network ensemble and combination approach with ESVR in generalization performance, the results reveal that ESVR has better generalization performance than other intelligent approaches in most cases.
作者 刘勇志
出处 《空军工程大学学报(自然科学版)》 CSCD 北大核心 2007年第4期49-52,共4页 Journal of Air Force Engineering University(Natural Science Edition)
关键词 参数预测 支持向量回归 集成 神经网络 泛化能力 parameter forecasting support vector regression ensemble neural network generalization performance
  • 相关文献

参考文献7

  • 1Granitto P M, Verdes P F, Ceccatto H A. Neural Network Ensemble : Evaluation of Aggregation Algorithms [ J ]. Artificial Intelligence,2005 , 163 : 139 - 162.
  • 2周志华,陈世福.神经网络集成[J].计算机学报,2002,25(1):1-8. 被引量:245
  • 3Krogh A, Vedelsby J. Neural Network Ensembles, Cross Validation, and Active Learning[ A]. Advances in Neural Information Processing Systems 7[ C]. CamBridge:MIT press, 1995. 231 -238.
  • 4罗公亮.从神经网络到支撑矢量机(上)[J].冶金自动化,2001,25(5):1-5. 被引量:20
  • 5李翠霞,于剑.一种模糊聚类算法归类的研究[J].北京交通大学学报,2005,29(2):17-21. 被引量:12
  • 6李国正 王猛 增华军 译 NelloCristianini JohnShawe-Taylor著.支持向量机导论[M].北京:电子工业出版社,2004..
  • 7吕瑛洁.基于神经网络的惯性器件故障预报[D].西安:第二炮兵工程学院硕士学位论文,2005.

二级参考文献13

  • 1张敏,于剑.基于划分的模糊聚类算法[J].软件学报,2004,15(6):858-868. 被引量:176
  • 2边肇祺.模式识别[M].清华大学出版社,1999..
  • 3Bezdek J C. Pattern Recognition with Fuzzy Objective Function Algorithms [ M ]. New York: Plenum Press,1981.
  • 4Krishnapuram R, Keller J M. A Possibilistic Approach to Clustering[J]. IEEE Trans. on Fuzzy Systems, 1993, 1(2) :98 - 110.
  • 5Cherkassky V, Mulier F. Learning from Data Concepts,Theory, and Methods[M]. John Wiley&Sons, Inc. 1998.413 - 417.
  • 6Barni M, Cappellini V, Mecocci A. Comments on ' A Possibilistic Approach to Clustering' [ J ]. IEEE Trans. on Fuzzy Systems, 1996,4(3) :393 - 396.
  • 7Schneider A. Weighted Possibilistic Clustering Algorithms[J]. In: Proc. of the 9th IEEE Int'l Conf. on Fuzzy Systems. Texas: IEEE, 2000,1:176 - 180.
  • 8Krishnapuram R, Keller J M. Possibilistic Means Algorithms: Insights and Recommendation[ J ]. IEEE Trans.on Fuzzy Systems, 1996,4(3):98- 110.
  • 9Krishnapuram R, Keller J M. The Possibilistic Means Algorithms: Insights and Recommendation [ J ]. IEEE Trans. on Fuzzy Systems, 1996,4(3):98- 110.
  • 10崔伟东,周志华,李星.神经网络VC维计算研究[J].计算机科学,2000,27(7):59-62. 被引量:3

共引文献352

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部