期刊文献+

基于稳定分布的PARCH模型 被引量:4

PARCH Model with Stable Distribution
下载PDF
导出
摘要 本文首先介绍了稳定分布和基于正态分布、稳定分布的PARCH模型,并通过股票指数收益率的稳定化PP图和直方图发现其具有高峰厚尾特征.最后,通过上证指数的VaR计算,得到在金融风险度量中基于稳定分布的PARCH模型比基于正态分布的PARCH模型更加有效。 In this paper, Stable distribution and PARCH models based on normal distribution and stable distribution are introduced. It is found from histograms and stablized PP plots of some stock - index return data that their distributions have a high - kurtosis and fat-tail characteristic. The calculation of the VaR for Shanghai stock indices shows that PARCICH medel with stable distribution is more efficient than PARCH model with normal distribution in risk valuation of finance.
作者 武东 汤银才
出处 《数理统计与管理》 CSSCI 北大核心 2007年第4期610-614,共5页 Journal of Applied Statistics and Management
基金 国家自然科学基金项目(10271079 10571057) 安微省高校青年教师科研项目资助
关键词 稳定分布 PARCH VAR 峰度 偏度 Stable distribution PARCH VaR Kurtosis Skewness
  • 相关文献

参考文献7

  • 1Bollerslev T.Generalized autoregressive conditional heteroskedasticity[J].Journal of Econometrics,31(1986),307-327.
  • 2Engle R.F.Autoregressive conditional heteroskedasticity with estimation of the variance of United Kingdom infiation[J].Econometrica,50(1982),987-1007.
  • 3Fama,E.F.The behavier of stock prices[J].Journal of the Business,38(1965),34-105.
  • 4Jorison P.I Value at Risk:The new benchmark for controlling market risk[M].New York:McGraw-Hill Companies,1997.
  • 5Mandelbrot,B..The variation of certain speculation prices[J].Journal of Business,26(1963),394-419.
  • 6Nolan,J.P.Stable Distributions:Models for Heavy Tailed Data[M].Springer Verlag,2005.
  • 7武东,汤银才.寿命分布的PP图[J].数理统计与管理,2004,23(5):33-39. 被引量:7

二级参考文献3

  • 1John R.Michael.The Stablized Probability Plot, Biometrika Vol70(1)(1983),PP11-17.
  • 2Tang Yincai. Approximated Parameter Estimation of Three-parameter Log-normal Distributions Based on Generalized Least Squares Method[J]. Journal of Shanghai Teachers' University 4(2001).
  • 3汤银才.三参数Weibull分布的渐近广义最小二乘估计[J].应用概率统计,1999,15(2):187-192. 被引量:4

共引文献6

同被引文献15

  • 1韩四儿,田铮,党怀义.厚尾相依序列均值变点的截尾估计及其收敛性[J].工程数学学报,2006,23(6):1031-1038. 被引量:10
  • 2Engle R F. Autoregressive conditional heteroscedasticity with estimates of the variance of United Kingdom inflation. Econometrica, 1982 ;50:987-1007.
  • 3Bollerslev T. Generalized autoregressive conditional heteroskedasticity. Journal of Econometrics, 1986 ;31:307-327.
  • 4Engle R F, Lilien D M, Robins R P. Estimating time-varying risk premia in the term structure: The ARCH-M model. Econometrica, 1987 ;55, :391-407.
  • 5Ding, Z, Granger C W J, Engle R F. A long memory property of stock market returns and a new model. Journal of Empirical Finance, 1993 ;1:83-106.
  • 6Engle Robert F.Autoregressive Conditional Heteroskedasticity with Estimation of the Variance of United Kingdom Inflation[J].Econometrica,1982(50):987-1008.
  • 7Bollerslev,Tim.Generalized Autoregressive Conditional Heteroskedasticity[J].Journal of Econometrics,1986(31):307-327.
  • 8Ding,Z.,C.W.J.Granger,and R.F.Engle.A Long Memory Property of Stock Market Returns and a New Model[J].Journal of Empirical Finance1,1993(1):83-106.
  • 9Kupiec,Paul H.Techniques for Verifying the Accuracy of Risk Measurement Models[J].Journal of Derivatives,1995(3):73-84.
  • 10Nelson,Daniel B.Conditional Heteroskedasticity in Asset Returns:A New Approach[J].Econometrica,1991(59):347-370.

引证文献4

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部