期刊文献+

建筑结构基于平衡降阶的时滞离散最优控制

DISCRETE TIME-DELAY OPTIMAL CONTROL OF STRUCTURES USING THE BALANCED REDUCTION SCHEME
下载PDF
导出
摘要 在状态空间下直接对结构振动的时滞微分方程进行离散,并引入适当的增广向量将之转化为不显含时滞项的标准离散形式,然后将该离散系统进行平衡降阶,取前几个可控度大的状态组成优势子系统,大大降低了离散系统的维数。在此基础上采用离散时间最优控制理论完成了建筑结构减振控制器的设计,所得出的控制律表达式除了含有当前的状态反馈,还包含前若干步控制项的组合,反映了时滞因素的影响,对大时滞情况亦有效。最后通过数值算例验证了这种控制器的有效性,特别是在不牺牲控制效果的基础上,显著降低了控制器的阶数。 The time-delay discrete equations are derived directly form the differential vibration equations of structures in state space which are transformed to a standard form containing no explicit time-delay terms by introducing an expanded state vector. The balanced reduction method is then applied to the discrete system and a dominant subsystem is formed based on the eigenmodes of the state subspace with higher controllability, and so the order of the discrete system is reduced considerably. The controller is designed with the discrete time-delay optimal control theory, which contains the control terms of the current state and a few previous states which reflect the influence of time-delay. The proposed means considerably reduce the order of the controller without causing essential difference in the control effect. A numerical example shows the effectiveness of the proposed method, which is so even if time-delays are rather large.
出处 《振动与冲击》 EI CSCD 北大核心 2007年第8期22-26,共5页 Journal of Vibration and Shock
基金 国家自然科学基金(No10472023) 教育部高等学校博士点专项科研基金(No20040141020)资助
关键词 地震激励 最优控制 控制时滞 振动抑制 平衡降阶 seismic excitation, optimal control, time delay, vibration attenuation, balanced reduction method
  • 相关文献

参考文献11

  • 1Yao J T P.Concept of structural control[J].Journal of Structural Division ASCE,1972,98:1567-1574.
  • 2Malek M,Jamashidi M.Time-delay Systems,Analysis,Optimization and Applications[M].North-Holland,1987.
  • 3Chung L L,Lin C C,Lu K H.Time-delay control of structures[J].Journal Earthquake Engineering and Structural Dynamics,1995,(24):687-701.
  • 4潘颖,王超,蔡国平.地震作用下主动减震结构的时滞离散最优控制[J].工程力学,2004,21(2):88-94. 被引量:6
  • 5Moore B C,Principal component analysis in linear system:controllability,observability,and model reduction[J].IEEE Transactions on Automatic Control,1981,26 (1):17-32.
  • 6Pernebo L,Silverman L M.Model reduction via balanced state space representations[J].IEEE Transactions on Automatic Control,1982,27(2):382-387.
  • 7张文首,林家浩,于骁.海洋平台地震响应的LQG控制[J].动力学与控制学报,2003,1(1):47-52. 被引量:4
  • 8Hu H Y,Wang Z H.Dynamics of controlled mechanical systems with delayed feedback[M].Berlin:Springer,2002.
  • 9孙增圻.计算机控制理论及应用[M].北京:清华大学出版社,1987..
  • 10钟万勰,谭述君,吴志刚.时滞系统的最优控制[C].第24届中国控制会议论文集.广州:华南理工大学出版社,2005,394-398.

二级参考文献10

  • 1[1]Soong TT.Active structural control:theory and practice.New York:Longman Scientific & Technical,1990
  • 2[2]Skelton RE,Hughes PC.Model cost analysis for linear matrix second order systems.Journal of Dynamic System.Measurement and Control,1980,102:151~158
  • 3[3]Moore BC.Principal component analysis in linear system:controllability,observability,and model reduction.IEEE Trans on Automatic Control,1981,26(1):17~32
  • 4[4]Gregory Jr CZ.Reduction of large flexible spacecraft models using internal balancing theory.Journal of Guidance,Control and Dynamics,1984,7 (6):725 ~ 732
  • 5[6]Lin JH,Zhang WS,Li JJ.Structural Responses to Arbitrarily Coherent Stationary Random Excitations.Computers & Structures,1994,50 (5):629~ 633
  • 6Yao J T P. Concept of structural control[J]. Journal of Structural Division ASCE, 1972, 98: 1567-1574.
  • 7Malek M and Jamashidi M. Time-delay Systems, Analysis, Optimization and Applications[M]. North-Holland, 1987.
  • 8Chung L L. Wang Y P and Tung C C. Instantaneous control of structures with time-delay consideration[J]. Engng. Struct., 1997, 19: 465-475.
  • 9Schmitendorf W E, Jabbari F and Yang J N. Robust control techniques for buildings under earthquake excitation[J]. Earthquake Engrg. And Struct. Dynamics., 1994, 23(5): 539-552.
  • 10孙增圻.计算机控制理论及应用[M].北京:清华大学出版社,1987..

共引文献78

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部