期刊文献+

基于粗糙集的电机机械状态特征的约简研究 被引量:4

RESEARCH ON FEATURES REDUCTION IN MECHANICAL CONDITION RECOGNITION ABOUT MOTORS BASED ON ROUGH SET
下载PDF
导出
摘要 针对集装箱起重机起升电机振动特征参数较多的特点,在利用小波包分解算法进行特征提取的过程中,引入基于粗糙集理论的属性约简方法,在保证识别精度的前提下约简特征参数的维数,以便更高效地进行机械状态识别。同时,引入Wallace测度对约简后的特征属性集与约简前进行识别精度比较。实验结果显示,约简前后的识别结果和精度基本相同,而特征属性维数大大减少,从而大大降低了聚类识别过程的复杂程度和计算量。 In view of too many attributes in the condition recognition of driving system of Container Crane, an attributes reduction method based on rough set is introduced in feature selection using wavelet packets in order to achieve the recognition more rapidly. Then, the Wallace measure is introduced for comparison between the clustering results based on the original data set and the reduced one. the experiments show that both sets give almost the same results, while the dimension of later set is much smaller, which simplifies greatly the complexity and computation of clustering.
出处 《振动与冲击》 EI CSCD 北大核心 2007年第8期32-34,共3页 Journal of Vibration and Shock
基金 上海市教育委员会科研项目(编号:2004095)
关键词 特征提取 粗糙集 聚类 小波包分解 feature selection, rough set, clustering, wavelet decomposition
  • 相关文献

参考文献7

  • 1Milligan G W.An examination of the effect of six types of error perturbation on fifteen clustering algorithms[J],Psychometrika.1980,45:325-342.
  • 2Pawlak Z.Rough Sets[J].International Journal of Information and Computer Science.1982,11 (5):341-356.
  • 3冯志鹏,宋希庚,薛冬新.基于广义粗糙集理论的旋转机械故障诊断[J].振动与冲击,2004,23(1):47-51. 被引量:6
  • 4万琼,商琳,李宁,谢振华,陈兆乾.基于粗糙集属性约减和神经网络集成的人脸识别技术[J].计算机应用研究,2005,22(6):238-239. 被引量:2
  • 5Lian-Yin Zhai,Li-Pheng Khoo.Feature extraction using rough set theory and genetic algorithms-an application for the simplification of product quality evaluation[J].Computers & Industrial Engineering.2002,43:661-676.
  • 6Questier F,Arnaut-Rollier I.Application of rough set theory to feature selectionforunsupervised clustering[J].Chemometrics and Intelligent Laboratory Systems.2002,63:155-167.
  • 7Wallace D L.Comment on a method for comparing two hierarchical clustering[J].J.Am.Stat.ssoc.1983,78:569-579.

二级参考文献10

  • 1W Zhao, R Chellappa, et al. Face Recognition:A Literature Survey[ R ]. CVL Technical Report, Center for Automation Research, University of Maryland at College Park ,2000,.
  • 2M Turk ,A Pentland. Eigenfaces for Recognition[J]. Journal of Cognitive Neuroscience, 1991,3 ( 1 ) :71 - 86.
  • 3Z Pawlak. Rough Sets [ J ]- International Journal of Information and Computer Science, 1982,11 ( 5 ) : 341 - 356.
  • 4Ivo Duntsch, Gtinther Gediga. Rough Set Data Analysis[ J ]. Encyclopedia of Computer Science and Technology, 2000,43:281-301.
  • 5D Wolpert. Stacked Generalization [ J ]. Neural Networks, 1993, 5(2) :241-259.
  • 6L K Hansen, P Salamon. Neural Network Ensembles [ J ]- IEEETrans. Pattern Analysis and Machine Intelligence, 1990, 12 ( 10 ) :993-1001.
  • 7李永敏,朱善君,陈湘晖,张岱崎,韩曾晋.基于粗糙集理论的数据挖掘模型[J].清华大学学报(自然科学版),1999,39(1):110-113. 被引量:109
  • 8胡可云,陆玉昌,石纯一.粗糙集理论及其应用进展[J].清华大学学报(自然科学版),2001,41(1):64-68. 被引量:121
  • 9冯志鹏,宋希庚,薛冬新,谢宇,邓东风.旋转机械振动故障诊断理论与技术进展综述[J].振动与冲击,2001,20(4):36-39. 被引量:58
  • 10郑栋梁,李中付,华宏星.结构早期损伤识别技术的现状和发展趋势[J].振动与冲击,2002,21(2):1-6. 被引量:78

共引文献6

同被引文献36

引证文献4

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部