期刊文献+

配体交换调控纳米金表面寡核苷酸自组装 被引量:3

Regulating Self-Assembly of Oligonucleotide on Gold Nanoparticles by Ligand-Exchange
下载PDF
导出
摘要 以4-巯基苯甲酸(MBA)为调控分子,对照巯基己醇(MCH),基于配体交换法对纳米金(10nm)表面的寡核苷酸(DNA)自组装进行调控,并用凝胶电泳进行表征。结果表明,在纳米金表面,MCH能完全取代DNA。当MCH与纳米金的摩尔比达到2400:1后,纳米金发生凝聚,MBA不能完全取代DNA;MBA和DNA的二元组装层能使纳米金在水溶液中稳定分散。另外用DNA取代MBA的反应比用MBA取代DNA的反应更容易进行。 Agarose gel electrophoresis was used to characterize the results of ligand-exchange. The ligand- exchange strategy was used to regulate the self-assembly of oligonucleotide on 10 nm gold nanoparticles with 4-mercaptobenzoic acid (MBA) and 6-mercapto-l-hexanol ( MCH), as the regulating molecule. The results show that the naked gold nanoparticles modified with MCH lead to irreversible aggregation but the gold nanop- articles modified with DNA and MBA are stable in solution, which impliedes that the negative charge of DNA and MBA molecules is critical in stabilizing gold nanoparticles. Both MBA and MCH can replace DNA on the surface of gold nanoparticles. The difference is that MCH can thoroughly replace the DNA on the surface of gold nanoparticles but MBA could not. At the molar ratio of MCH/gold nanoparticles = 2400/1, the aggrega- tion of gold nanoparticles is found. It is also found that the ligand-exchange reaction of using MBA as in-coming ligands and DNA as out-coming ligands is much difficult than using DNA as in-coming ligands and MBA as out-coming ligands.
出处 《分析化学》 SCIE EI CAS CSCD 北大核心 2007年第8期1199-1202,共4页 Chinese Journal of Analytical Chemistry
基金 重庆大学研究生科技创新基金(No200701Y1A0300216)资助项目
关键词 纳米金 寡核苷酸 4-巯基苯甲酸 巯基己醇 配体交换 Gold nanoparticles, oligonucleotide, 4-mercaptobenzoic acid, 6-mercapto-l-hexanol, ligand-exchange
  • 相关文献

参考文献11

  • 1Rosi N L,Mirkin C A.Chem.Rev.,2005,105 (4):1547-1562
  • 2许媛媛,边超,陈绍凤,夏善红.基于微机电系统技术和纳米金自组装膜的安培型免疫传感器研究[J].分析化学,2006,34(5):608-612. 被引量:11
  • 3Nam J M,Stoeva S I,Mirkin C A.J.Am.Chem.Soc.,2004,126(19):5932-5933
  • 4Nam J M,Thaxton C S,Mirkin C A.Science,2003,301:1884 - 1886
  • 5Demers L M,Mirkin C A,Mucic R C,Reynolds R A,Letsinger R L,Elghanian R,Viswanadham G.Anal.Chem.,2000,72 (22):5535-5541
  • 6Parak W J,Pellegrino T,Micheel C M,G erion D,Williams S C,Alivisatos A P.Nano Lett.,2003,3 (1):33 - 36
  • 7Hostetler M J,Templeton A C,Murray R W.Langmuir,1999,15 (11):3782 - 3789
  • 8Song Y,Murray R W.J.Am.Chem.Soc.,2002,124(24):7096 -7102
  • 9Song Y,Huang T,Murray R W.J.Am.Chem.Soc.,2003,125(38):11694-11701
  • 10Guo R,Song Y,Wang G,Murray R W.J.Am.Chem.Soc.,2005,127(8):2752 -2757

二级参考文献14

  • 1Zhuo Y,Yuan R,Chai Y,Tang D,Zhang Y,Wang N,Li X,Zhu Q.Electrochemistry Communications,2005,7(1):355~360
  • 2Yu H,Yan F,Dai Z,Ju H G.Nalytical Biochemistry,2004,331(1):98~105
  • 3Fernandez-Sanchez C,Gonzalez-Garcia M B,Costa-Garcia A.Biosensors and Bioelectronics,2000,14(12):917~924
  • 4Wilson M S,Rauh R D.Biosensors and Bioelectronics,2004,19(7):693~699
  • 5Corry B,Uilk J,Crawley C.Anal.Chim.Acta,2003,496(1-2):103~116
  • 6Akram M,Stuart M C,Wong D K Y.Anal.Chim.Acta,2004,504(2):243~251
  • 7Wu X J,Choi M M F.Anal.Chim.Acta,2004,514(2):219~226
  • 8Wang L,Wang E.Electrochemistry Communications,2004,6(2):225~229
  • 9Xu S Y,Han X Z.Biosensors and Bioelectronics,2004,19(9):1117~1120
  • 10Yu H Z,Zhao J W,Wang Y Q,Cai S M,Liu Z F.Journal of Electroanalytical Chemistry,1997,438(1-2):221~224

共引文献10

同被引文献54

引证文献3

二级引证文献21

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部